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ABSTRACT 

Swarm attacks are of great concern to the U.S. Navy as well as to navies around 

the world and commercial ships transiting through waters with high volume of 

marine traffic. A large group of hostile ships can hide themselves among various 

other small ships, like pleasure crafts, fishing boats and transport vessels, and 

can make a coordinated attack against a High Value Unit (HVU) while it passes 

by. The HVU can easily be overwhelmed by the numbers and sustain heavy 

damage or risk being taken over. 

The objective of this thesis is to develop heuristic algorithms that multiple 

defenders can use to intercept and stop the advances of multiple attackers. The 

attackers are in much larger numbers compared to the defenders, and are 

moving in on a slow moving HVU. Pursuit guidance laws and proportional 

navigation (PN) guidance laws, commonly used in missile guidance strategies, 

are modified to be used by the defenders to try intercepting attackers that 

outnumber them. 

Another objective is to evaluate the effectiveness of the heuristic 

algorithms in defending the HVU against the swarm attack. The probability that 

the HVU survives the swarm attack will be used as a measure of effectiveness of 

the algorithms. The impact of various parameters, like the number of defenders 

and the speed of defenders, on the effectiveness of the algorithms are also 

evaluated. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

Since the attack on U.S.S. Cole in 2000 and the U.S.-Iranian naval dispute 

in the Strait of Hormuz in 2008, awareness for asymmetric warfare has 

increased. Swarm attacks, in particular, are of great concern to the U.S. Navy as 

well as to navies around the world and commercial ships transiting through 

waters with high volume of marine traffic. A large group of hostile ships can hide 

themselves among various other small ships, like pleasure crafts, fishing boats 

and transport vessels, and can make a coordinated attack against a High Value 

Unit (HVU) while it passes by. The HVU can easily be overwhelmed by the 

numbers and sustain heavy damage or risk being taken over. 

The NPS thesis by Tiwari, 2008 [1] presented the capability gap in 

defending against such a swarm attack. This thesis aims to study defensive 

strategies that can be used to defend against swarm attacks, and evaluates the 

mission effectiveness of these strategies using a cost function that can 

realistically represent a multi-agent engagement scenario. 

B. OBJECTIVES 

The objective of this thesis is to develop heuristic algorithms that multiple 

defenders can use to intercept and stop the advances of multiple attackers. The 

attackers are in much larger numbers compared to the defenders, and are 

moving in on a slow moving HVU. Pursuit guidance laws and proportional 

navigation (PN) guidance laws, commonly used in missile applications, are 

modified to be used by the defenders to try intercepting attackers that 

outnumbers them. 

Another objective is to evaluate the effectiveness of the heuristic 

algorithms in defending the HVU against the swarm attack. The probability that 

the HVU survives the swarm attack will be used as a measure of effectiveness of  
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the algorithms. The impact of various parameters, like the number of defenders 

and the speed of defenders, on the effectiveness of the algorithms are also 

evaluated. 

C. LITERATURE REVIEW 

Various existing literature related to multi-agent engagement scenarios 

usually focus on search algorithms. Chung et al, 2011 [2] looks at optimal 

detection of underwater intruder in a channel using Unmanned Underwater 

Vehicles. Royset & Sato, 2010 [3] considers route optimization for multiple 

searchers to look for one or more probabilistically moving target(s). In these two 

papers, there is only one target with multiple defenders searching for it. Jang & 

Tomlin, 2005 [4], Shaferman & Oshman, 2009 [5], Shin, 2011 [6] investigates 

various cooperative guidance strategies in multi-agent engagement scenarios, 

but are mostly limited to missile guidance and considers scenarios with only 3 or 

4 targets, defended with an equal number of defenders. Rozen, 2009 [7], studies 

the detection, recognition and interception of multiple targets using an interdiction 

force of a UAV and a navy vessel, but the number of targets are small and 

moves at random and cannot be considered as a swarm. In addition, mission 

effectiveness is based only on the number of targets considered intercepted 

under conditions that are not reflective of real life situations. 

This thesis explores strategies that naval ships can use to engage 

attackers that greatly outnumbers themselves effectively, and uses a cost 

function that considers the hit rate of the defenders against the attackers and the 

attackers against the HVU, to work out the mission effectiveness by evaluating 

the survival rate of the HVU. 

D. THESIS ORGANIZATION 

In the next chapter, the setup of the simulation is explained, describing the 

parameters used to simulate the motion of the HVU, the attackers and the 

defenders. The derivation of the cost function used to evaluate the mission 

effectiveness of the algorithm will also be shown. A test matrix is formulated to 
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investigate the effects of adjusting various parameters have on the defense 

strategies. Analysis of the results obtained is presented in Chapter III, followed 

by the conclusion and recommendations for future work that can be done in this 

area of research in Chapter IV. 
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II. METHODOLOGY 

A. SCENARIO 

Consider a HVU, like an aircraft carrier or a supply container ship, moving 

through waters with a high number of small ships in the region. Some of these 

small ships may have no hostile intent, but hidden amongst them are a group of 

ships that are intending to attack the HVU. When the HVU passes by their 

location, these hostile ships can launch a coordinated attack against the HVU. 

They maneuver towards HVU at the same time, and in large numbers. This is 

what we consider as a swarm attack. The attackers may be equipped with small 

caliber guns and some may carry explosive with the intent of conducting a 

suicide attack. The HVU detects these attackers on its radar and determines that 

it is under imminent attack based on the number of contacts moving towards its 

location at high speed.  The HVU then deploys multiple Unmanned Surface 

Vehicles (USVs) equipped with weaponry, to intercept and neutralize these 

attackers before they can get close enough to become a threat. The number of 

USVs (defenders) deployed is small compared to the number of attackers. 

B. SIMULATION 

The above scenario is simulated using MATLAB®. The setup of the 

scenarios to be studied is to be based upon real life platforms and weapons 

systems to give a realistic model and therefore a representative simulation of 

actual hostile engagement scenarios. Current Fast Attack Crafts (FAC) and Fast 

Inshore Attack Crafts (FIAC) have max speeds in excess of 40 knots (~20 m/s). 

As such, the attackers are modeled to have max speeds of 45 knots (~23 m/s), 

while varying top speeds for defenders between 20 knots (~10m/s) to 60knots 

(~30 m/s) will be investigated. The hostile crafts are assumed to be armed with 

small caliber guns, or carrying explosives for suicidal attacks. The maximum 

effective ranges of these types of weapons do not exceed 1 nmi (~1.8 km). 

Therefore, to be able to intercept the hostile targets before they get within 
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effective range of their weapons, the defenders have to intercept these hostile 

targets at least 1nmi from the HVU. At the lowest defender speed we will be 

investigating, the defenders will take about 3 minutes to travel 1 nmi. During this 

time, the attackers can travel upwards of 2.25 nmi. In other words, the defenders 

have to be deployed to intercept these hostile targets at least 3.25 nmi from the 

HVU. For the simulations, the attackers will start at 4.25 nmi (~8 km) away from 

the HVU to provide a margin of safety. Modern sensors systems carried by Naval 

Fighting Ships can detect targets as far away as 100 to 200 km. So detecting 

these targets would not be a problem at all. The weapon systems carried by the 

defenders will be small to medium caliber guns having max effective ranges from 

1nmi (~1800 m) to about 2 nmi (~3700 m). 

A cost function is developed that will allow us to evaluate the effectiveness 

of the defense strategies by calculating the probability of the HVU surviving the 

swarm attack. We can vary some of the parameters used in the scenario to look 

at how some of these parameters affect the survival rate of the HVU. Some of 

the parameters we are going to look at are, guidance laws used by the defenders 

to track the attackers, the number of defenders and the speed ratio of the 

defenders to attackers. 

The following paragraphs will explain how the simulation is set up to 

simulate the motions of the HVU, attackers and defenders, as well as the 

describing the guidance laws used by the defenders. Following which, a matrix of 

scenarios is formed to explore the effects of varying parameters in the simulation. 

1. High Value Unit (HVU) 

The HVU is simulated to be a relatively slow moving vessel with limited 

maneuvering capabilities. In the simulation, the HVU will start at the origin (0, 0), 

and moves at a constant velocity of 5 m/s in a straight line directly to the north (in 

the positive y direction). The HVU is assumed to have detected the hostile 

targets at a distance away and is starting to deploy its defensive force of USVs. 

The HVU will not be taking evasive actions to avoid the attackers in this 
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simulation, since it cannot outmaneuver the attackers anyway. The HVU has to 

depend on the defensive force and onboard defensive capabilities to fend off the 

attack. 

Figure 1 shows a plot of the HVU motion in two-dimensional space over 

the total simulation time, T. 

 

 Motion of High Value Unit Figure 1.  

2. Attackers 

The initial positions of the 40 attackers are randomly generated with 

uniform distribution over a rectangular area to the east of the HVU (positive x-

direction). This area spans from x = 8000 to x = 8100, and y = 0 to y = 500. The 

attackers’ trajectories are generated using a time-coordinated path following 

control architecture described in Ghabcheloo et al, 2009[8], with their speeds 

constrained to a maximum of 23m/s. The trajectories thus generated are 

collision-free, and ensures that the attackers reach the HVU at the same time for 

a coordinated attack. The attacker are assumed to ignore the defenders as they 

try to intercept them, as they will be focused on the task at hand to destroy the 

HVU using a suicidal attack. 
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The weapons carried on these attacking crafts will be limited to small and 

medium caliber guns, as well as explosives, all of which having effective ranges 

of no more than 1800m. 

Figure 2 shows the typical trajectories of 40 attackers in a coordinate 

attack against the HVU. 

 

 Attackers trajectories Figure 2.  

3. Defenders 

The defenders are simulated to be moving in formation alongside the 

HVU, and are deployed simultaneously to intercept the incoming attackers. They 

will start moving towards the attackers at their maximum speeds as soon as they 

are deployed. A divide and conquer tactic will be used, where each defender will 

be assigned a group of attackers to intercept and neutralize. The defenders will 

use either modified PN guidance law or pursuit guidance law to guide them 

towards the group of assigned attackers. The guidance laws used will be 

discussed in more detail later in this chapter. 

The field of view (FOV) for these defenders will be ±60⁰ from their 

heading. When an attacker is within the defenders’ FOV and weapons’ effective 

range, the defenders will shoot at the attackers in an attempt to neutralize it. If 
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there are multiple attackers within the defender’s sight, the defender will divide its 

attention evenly to each of these attackers that are in sight. This is to ensure that 

the defender can neutralize as many attackers as it can before the attackers 

maneuvers past it. 

Figure 3 shows a typical engagement scenario where five defenders try to 

intercept 40 attackers that are coming to attack the HVU. 

 

 Defenders trajectories to intercept attackers Figure 3.  

4. Cost Function 

The effectiveness of the defense strategy is evaluated by estimating the 

probability of the HVU surviving the swarm attack. A cost function, developed by 

Claire Walton from UCSC [9], derives the probability that the HVU has survived 

until time 𝑡 + ∆𝑡 using conditional probabilities. This probability can be 

represented as 

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) ∙ 𝑓(𝑡,∆𝑡)    (2.1) 

where 𝑓(𝑡,∆𝑡) is the probability that the HVU survived in the time interval 

[𝑡, 𝑡 + ∆𝑡]. By modeling the function 𝑓(𝑡,∆𝑡), a differential equation for 𝑝(𝑡) can 

be obtained by taking the limit, ∆𝑡 → 0. 
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To formulate the function 𝑓(𝑡,∆𝑡), let us first consider a single defender 

protecting a HVU from a single attacker. Let 𝑝(𝑡) be the probability that the HVU 

survived until time 𝑡. The goal is to maximize the value of 𝑝(𝑇) at the end of the 

simulation when 𝑡 = 𝑇. 

Let: 

• 𝑞(𝑡) = the probability that the attacker survived to time 𝑡 

• 𝑠𝑎(𝑡) = instantaneous attacker hit rate against HVU 

• 𝑠𝑑(𝑡) = instantaneous defender hit rate against attacker 

The probability of the attacker surviving until time 𝑡 + ∆𝑡 can be expressed 

as 

𝑞(𝑡 + ∆𝑡) = 𝑞(𝑡)(1 − 𝑠𝑑(𝑡)∆𝑡)   (2.2) 

This creates the differential equation 

𝑞̇(𝑡) = −𝑞(𝑡)𝑠𝑑(𝑡)    (2.3) 

 

Solving this equation yields 

𝑞(𝑡) = 𝑒−∫ 𝑠𝑑(𝜏)𝑑𝜏𝑡
0     (2.4) 

The effective attackers hit rate against the HVU at time 𝑡, given that the 

attacker survived until that time, is therefore 𝑞(𝑡)𝑠𝑎(𝑡). The probability that the 

HVU surviving until time 𝑡 + ∆𝑡 can then be expressed in a similar fashion to 𝑞(𝑡), 

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡)(1 − 𝑞(𝑡)𝑠𝑎(𝑡)∆𝑡)   (2.5) 

which yields 

𝑝(𝑡) = 𝑒−∫ 𝑞(𝜏)𝑠𝑎(𝜏)𝑑𝜏𝑡
0    (2.6) 

Substitution of 𝑞(𝑡) into this expression and evaluating to time 𝑇, we obtain the 

cost function, 
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    𝑝(𝑇) = 𝑒−∫ 𝑒−∫ 𝑠𝑑(𝜔)𝑑𝜔𝑇
0 𝑠𝑎(𝜏)𝑑𝜏𝑇

0     (2.7) 

To expand this to a multi-agent engagement scenario, the same method 

can be applied, but the hit rate of each defender against each attacker has to be 

considered. To do this, we define the following terms 

• 𝑞𝑙(𝑡) = the probability that the attacker 𝑙 survived to time 𝑡 

• 𝑠𝑎,𝑙(𝑡) = 𝑙-th attacker hit rate against HVU 

• 𝑠𝑑,𝑘(𝑡) = 𝑘-th defender hit rate against attacker 

Now, the probability that the 𝑙-th attacker survives until time 𝑡 is 

𝑞𝑙(𝑡 + ∆𝑡) = 𝑞𝑙(𝑡)��1 − 𝑠𝑑,𝑘(𝑡)∆𝑡�
𝐾

𝑘=1

                                (2.7)  

this yields 

𝑞𝑙(𝑡) = 𝑒−∫ ∑ 𝑠𝑑,𝑘(𝜏)𝐾
𝑘=1 𝑑𝜏𝑡

0     (2.8) 

Similarly, we write for the HVU, 

    

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡)��1 − 𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡�
𝐿

𝑙=1

                           (2.9) 

This can be made into a differential equation if we expand the product and 

discard higher order terms of ∆𝑡, 

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) + ��1 −�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡
𝐿

𝑙=1

+ ℎ. 𝑜. 𝑡.� − 1� 𝑝(𝑡)         (2.10) 

  

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) + �−�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡
𝐿

𝑙=1

+ ℎ. 𝑜. 𝑡. � 𝑝(𝑡)                  (2.11) 
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The differential equation can then be written 

𝑝̇(𝑡) = �−�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)
𝐿

𝑙=1

� 𝑝(𝑡)                                (2.12) 

and the solution evaluated to time 𝑇 is 

𝑝(𝑇) = 𝑒−∫ �∑ 𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)𝐿
𝑙=1 �𝑑𝜏𝑇

0    (2.13) 

The 𝑙-th attacker hit rate against the HVU is modeled using a beta function, with 

positive parameters 𝛼,𝛽 ≥ 2. The function can be connected smoothly (C1) as a 

piecewise function, 

𝑠𝑎,𝑙�𝑟(𝑡)� = �𝑟(𝑡)𝛼�1 − 𝑟(𝑡)�𝛽 , 0 ≤ 𝑟(𝑡) ≤ 1
0 , 𝑒𝑙𝑠𝑒

  (2.14) 

where 𝑟(𝑡) is the range of the attacker to the HVU. The parameters are adjusted 

to reflect the hit rate of the attackers’ weaponry against the HVU. In the 

simulations, the range of this hit rate is limited to 800m. Figure 4 shows an 

example of the hit rate function modeled with the beta function. 

 

 Hit rate function modeled using beta function in 3D Figure 4.  
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As for the defenders’ hit rate against the attackers, the weapons carried by 

the defenders are assumed to be small to medium caliber guns. The maximum 

effective ranges of such weapons are expected to be around 1800m to 3700m. 

The peak effectiveness of the weapon is expected to occur at a range of around 

100 to 200m from the defender. This is because if the attacker is any closer to 

the defender, the LOS rate to the attacker is going to be very high, especially for 

a cross-range engagement scenario. Limitations of the swiveling rate of the guns 

will make it hard to keep up with the moving attackers. The hit rate will also 

decrease from the peak value at 100–200m at an exponential rate. This reflects 

the fact that the lethality of the shells fired at the attackers reduces with 

increasing distance travelled. Accuracy of the shells also decreases with 

increasing range due to wind and weapon recoil. Figure 5 shows the expected hit 

rate function. 

 

 Hit rate of 𝑘-th defender against attacker Figure 5.  

The hit rate function shown here is modeled with a lognormal probability 

distribution curve. Note that the hit rate function modeled this way does not have 

a finite range like the beta functions have. The value decreases to a very small, 

but finite value at very large range. This leads to some unexpected results, which 

will be discussed later in the results section. 

To simulate the limited FOV of the weapon system, the hit rate function is 

modified with an angularly decaying multiplier, which decreases with arc angle. 
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Figure 6 shows the multiplier function with such FOV limitations in three-

dimensional space. 

 

 Angularly decaying rate function reflecting FOV limitations Figure 6.  

Another situation the hit rate function should account for is the fact that 

when multiple attackers are within a single defender’s FOV, the defender’s 

attention is divided between the attackers. This division of attention can be 

simulated by dividing the hit rate function by another function that smoothly 

approximates the number of attackers in its FOV. We can define 

• 𝑥𝑘 = the location of the 𝑘-th defender 

• 𝑥𝑙 = the location of the 𝑙-th attacker 

The following sum of Gaussian distributions can then be used as the division 

function, 

�Φ�
𝜌 − ‖𝑥𝑘 − 𝑥𝑙‖

𝜎
�

𝐿

𝑙=1

                                                     (2.15) 

with the standard deviation 𝜎 set to a small number, to approximate the number 

of attackers within a radius 𝜌 of the 𝑘-th defender. 
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C. SIMULATION PARAMETERS 

In this section, we look at the various parameters in the simulation that 

can influence the effectiveness of the defensive force. We will look at three 

parameters, the guidance strategy the defenders use to intercept the attackers, 

the number of defenders deployed and the speed ratio of the defenders’ speed to 

the attackers’ speed. 

1. Guidance Laws 

Here, we are going to look at two guidance laws. One is based on pursuit 

guidance and the other is based on proportional navigation (PN) guidance. 

Pursuit guidance and PN guidance are common guidance laws used in missile 

guidance. Zarchan [10] describes these guidance laws in detail. Modern missiles 

use more complex forms of guidance laws, but in this thesis, we are only going to 

look at the basic pursuit and PN guidance laws for a start. In a nutshell, pursuit 

guidance generates turn commands that points the defender to the line-of-sight 

(LOS) to the attacker, while PN guidance generates turn commands proportional 

to LOS rate to form an intercept triangle to intercept the attacker along its path of 

motion. Both of LOS angle and LOS rate can be easily obtained from EO seekers 

that can be equipped on a USV. 

a. Pursuit Guidance 

In the simulation, pursuit guidance is implemented by having a 

defender change its heading to face directly at the attacker. This is akin to giving 

a turn command that will turn the defender an amount equal to the LOS angle in 

a single time step. This simplifies calculation and implementation, as we only 

need to find the LOS vector. When the defender is up against a swarm of 

attackers, the pursuit guidance law is not going to work in its basic form, as we 

have multiple LOS vectors instead of just one. Therefore, for the defender to use 

the guidance law, all the LOS vectors are combined into one “effective” vector 

that the defender will use. This combination can be achieved by finding a 
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weighted sum of the LOS vectors. We consider that in a real life engagement 

scenario, priority should be given to attackers that the defenders can reach first. 

In the simulation, we have the following information 

• 𝑷𝒅 = �
𝑥𝑑
𝑦𝑑�  = the position of the defender 

• 𝑷𝒂,𝒍 = �
𝑥𝑎,𝑙
𝑦𝑎,𝑙

� = the position of the 𝑙-th attacker 

• 𝑽𝒅 = �𝑥̇𝑑𝑦̇𝑑
� = the velocity of the defender 

• 𝑽𝒂,𝒍 = �
𝑥̇𝑎,𝑙
𝑦̇𝑎,𝑙

� = the velocity of the 𝑙-th attacker 

From this we can obtain 

• 𝑑𝑙, the distance of the defender to the 𝑙-th attacker 

𝑑𝑙 = �𝑷𝒅 − 𝑷𝒂,𝒍�    (2.16) 

• 𝒊𝒂,𝒍, the unit LOS vector of the defender to the 𝑙-th attacker 

𝒊𝒂,𝒍 = �𝑷𝒅 − 𝑷𝒂,𝒍� 𝑑𝑙⁄     (2.17) 

• 𝑣𝑗 is the closing velocity of the defender to the 𝑙-th attacker 

𝑣𝑙 = 𝒊𝒂,𝒍
𝑻�𝑽𝒅 − 𝑽𝒂,𝒍�    (2.18) 

Therefore, the unit velocity vector of the defender, 

𝒊𝒅 =
∑ 𝑣𝑙

𝑑𝑙
𝐿
𝑙=1 𝒊𝒂,𝒍

∑ 𝑣𝑙
𝑑𝑙

𝐿
𝑙=1

�
∑ 𝑣𝑙

𝑑𝑙
𝐿
𝑙=1 𝒊𝒂,𝒍

∑ 𝑣𝑙
𝑑𝑙

𝐿
𝑙=1

��                                 (2.19) 

This places priority on the attacker that the defender can reach in 

the shortest time, since 𝑣𝑙
𝑑𝑙

= 1
𝑡𝑙

 where 𝑡𝑙 is the time to reach the 𝑙-th attacker 

based on a straight-line intercept course of the defender to the attacker along the 

LOS vector. The lower the time, 𝑡𝑙 is, the higher the weightage will be for the 𝑙-th 

attacker. Figure 7 illustrates this method. 
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 Pursuit guidance with weightage on LOS vectors Figure 7.  

Note that only the attackers that are within the FOV of the 

defenders, as denoted by the shaded triangle in the figure, are included in the 

computation. 

b. PN Guidance 

For PN guidance, a turn command is generated that is proportional 

to the LOS rate of the attacker. This puts the defenders on an intercept triangle 

where the defender will intercept the attacker along its path of motion. As we 

have multiple attackers in this case, we need to come up with a single turn 

command for the defender such that it will track the general swarm movement, 

while giving priority to the closest threat. One possible way to implement PN 

guidance for multiple attackers is to compute the centroid of the attacker in the 

defender’s FOV, as well as the effective velocity of that centroid, and apply PN  
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guidance to intercept this moving centroid. This centroid is to be weighted by the 

closing velocity and distance to each attacker to give priority to attackers with 

lower intercept times. To do this we can find 

The centroid of attackers in defender’s FOV, 

𝑷𝒂 = �
𝑥𝑎
𝑦𝑎� = �

𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

𝑷𝒂,𝒍 �
𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

�                                        (2.20) 

and the velocity of this centroid, 

𝑽𝒂 = �𝑥̇𝑎𝑦̇𝑎
� = �

𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

𝑽𝒂,𝒍 �
𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

�                                        (2.21) 

From which, we find 

• 𝑑𝑎, the distance of the defender to the attacker centroid 

𝑑𝑎 = ‖𝑷𝒅 − 𝑷𝒂‖    (2.22) 

• 𝒊𝒂, the unit LOS vector of the defender to the attacker 

centroid 

𝒊𝒂 = �cos𝜃𝑎
sin𝜃𝑎

� = (𝑷𝒅 − 𝑷𝒂) 𝑑𝑎⁄   (2.23) 

Now, we can obtain the LOS rate by 

𝜃𝑎̇ =
(𝑥̇𝑑 − 𝑥̇𝑎) sin𝜃𝑎 − (𝑦̇𝑑 − 𝑦̇𝑎) cos𝜃𝑎

𝑑𝑎
                (2.24) 

The turn command needed,  𝜔𝑐, is then calculated by 

𝜔𝑐 = 𝐾𝜃𝑎̇    (2.25) 

with the gain of the PN guidance law, 𝐾 = 6 

Figure 8 illustrates this method. 
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 Proportional Navigation guidance with weighted attacker centroid Figure 8.  

Again, note that only attackers within the defender’s FOV is 

included in the computation of the required turn rate. 

2. Number of Defenders 

By increasing the number of defenders we have against a swarm, we can 

expect the defenders to take down more attackers before they can get to the 

HVU. Hence, the chances of survival of the HVU can be expected to improve 

with increasing number of defenders. However, we can also expect that there 

would be some sort of diminishing return, where at some point, increasing the 

number of defenders is not going to increase the HVU survival rate significantly. 

The number of defenders deployed will be varied from 1 to 25. 



 20 

3. Speed Ratio 

The speed of the defenders will determine where they can first intercept 

the incoming attackers. It also affects the amount of time that the defenders have 

on the target. We would not want the defenders to intercept the attackers too 

late. Otherwise, they can be close enough to the HVU to pose a threat. However, 

we would not want the defenders to be moving so fast that they cannot target the 

attackers long enough to take them down. The speeds of the defenders will be 

varied from 10m/s to 30 m/s (about 19knots to 58knots), while the attackers’ 

speed will be kept at 23 m/s (45knots). This corresponds to speed ratios between 

0.4348 and 1.304. 

4. Test Matrix 

In each of these scenarios, 50 randomly generated attacker trajectories 

will be evaluated to obtain an average performance of the defense strategy used. 

This is to make sure that the performance of the defense strategy is not a limited 

to a specific attacker trajectory. The MATLAB® source code written for the 

simulation is documented in Appendix A of this thesis. 

Table 1 summarizes the scenarios that are simulated. 
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Parameter Number of 
defenders 

Number of 
attackers 

Speed of 
defenders 

(m/s) 

Speed of 
attackers 

(m/s) 

Guidance 
Law used 

Guidance 
Law 

1 40 25 23 Pursuit 
2 40 25 23 Pursuit 
3 40 25 23 Pursuit 
4 40 25 23 Pursuit 
5 40 25 23 Pursuit 
1 40 25 23 PN 
2 40 25 23 PN 
3 40 25 23 PN 
4 40 25 23 PN 
5 40 25 23 PN 

# of 
Defenders 

6 40 25 23 PN 
7 40 25 23 PN 
8 40 25 23 PN 
9 40 25 23 PN 

10 40 25 23 PN 
15 40 25 23 PN 
20 40 25 23 PN 
25 40 25 23 PN 

Speed 
Ratio 

 

5 40 10 23 PN 
5 40 11 23 PN 
5 40 12 23 PN 
5 40 13 23 PN 
5 40 14 23 PN 
5 40 15 23 PN 
5 40 16 23 PN 
5 40 17 23 PN 
5 40 18 23 PN 
5 40 19 23 PN 
5 40 20 23 PN 
5 40 21 23 PN 
5 40 22 23 PN 
5 40 23 23 PN 
5 40 24 23 PN 
5 40 25 23 PN 
5 40 30 23 PN 



 22 

Parameter Number of 
defenders 

Number of 
attackers 

Speed of 
defenders 

(m/s) 

Speed of 
attackers 

(m/s) 

Guidance 
Law used 

Speed 
Ratio 

 

5 40 10 23 Pursuit 
5 40 11 23 Pursuit 
5 40 12 23 Pursuit 
5 40 13 23 Pursuit 
5 40 14 23 Pursuit 
5 40 15 23 Pursuit 
5 40 16 23 Pursuit 
5 40 17 23 Pursuit 
5 40 18 23 Pursuit 
5 40 19 23 Pursuit 
5 40 20 23 Pursuit 
5 40 21 23 Pursuit 
5 40 22 23 Pursuit 
5 40 23 23 Pursuit 
5 40 24 23 Pursuit 
5 40 25 23 Pursuit 
5 40 30 23 Pursuit 

Table 1.   Scenarios to be simulated 
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III. RESULTS ANALYSIS 

A. SIMULATION RESULTS 

The measure of effectiveness (MOE) used to evaluate the performance of 

the defense strategy used is the probability of the HVU surviving the swarm 

attack at the end of the simulation, 𝑝(𝑇). The larger the objective value is, the 

more effective the defense strategy is. The values that 𝑝(𝑇) can take are 

between 0 and 1, with 𝑝(𝑇) = 0 meaning that the HVU is guaranteed to be 

destroyed in the swarm attack and 𝑝(𝑇) = 1 meaning that the HVU is guaranteed 

to survive the swarm attack. 

In this chapter, we look at the performance of various strategies with 

varying parameters as described in Chapter II Section C, and analyze whether 

the simulation is sufficiently describing the engagement scenario. In all scenarios 

simulated, there will be 40 attackers, each having a maximum speed of 23m/s. 

50 sets of initial attacker positions are generated randomly using uniform 

distribution over an area from x = 8000 to x = 8100, and y = 0 to y = 500. This 

corresponds to 50 different sets of attacker trajectory. The simulation will be 

repeated using the same 50 sets of attacker position for each of the cases to be 

simulated, and the mean of the MOE obtained from the 50 simulations will be 

used as the basis for comparison between cases. 

1. Guidance Strategies 

The performance of pursuit guidance is compared to that of PN guidance, 

with the number of defenders between 1 and 5. The speed of the defenders is 

kept at 25m/s, corresponding to a speed ratio of 1.1. The slight advantage in 

speed for the defenders is to allow the guidance laws to perform better against 

the attackers. Table 2 summarizes the objective values obtained and Figure 9 

plots the values for comparison. 
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Parameter 
Number 

of 
defenders 

Guidance 
Law used 

MOE 

Mean Standard 
deviation 

Guidance Law 

1 Pursuit 0.000314 0.002160 
2 Pursuit 0.092827 0.041404 
3 Pursuit 0.939744 0.011297 
4 Pursuit 0.997371 0.000407 
5 Pursuit 0.999848 0.000029 
1 PN 0.000000 0.000000 
2 PN 0.074510 0.057751 
3 PN 0.171997 0.282923 
4 PN 0.222126 0.294244 
5 PN 0.239250 0.301488 

Table 2.   Measure of Effectiveness for pursuit guidance and PN guidance 

 
 Comparison of pursuit guidance and PN guidance Figure 9.  

The comparison between pursuit guidance and PN guidance yields a 

rather surprising result. Pursuit guidance, which is usually considered inferior to 

PN guidance in missile applications, seems to perform better, needing only three 
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defenders to obtain a MOE of about 0.94. In other words, the HVU survives 94% 

of the time when three defenders are used against a swarm of 40 attackers. 

Comparatively, PN guidance can only achieve a MOE of about 0.24 with five 

defenders, meaning the HVU survives only about 24% of the time. The reason 

for this result is obvious when we look at the trajectory of the defenders. Figure 

10 shows a typical engagement scenario when pursuit guidance is used. 

 

 Typical engagement scenario using pursuit guidance Figure 10.  

As can be seen in the engagement scenario, the defenders will always 

end up in a tail chase against the attackers. This is to be expected when pursuit 

guidance is used. However, unlike missile engagement scenarios, the probability 

of neutralizing the attackers does not depend on how close the defenders can 

get to the attackers, but rather on the time on target that the defenders have. 

Once the defenders get behind the attackers, the attackers are effectively 

Defender’s motion 

Attacker’s motion 

Defender’s FOV 
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constantly within the defenders’ FOV and attacking range. Therefore, the 

probability of the attackers being neutralized increases greatly. 

Figure 11 shows the engagement scenario where five defenders are 

deployed against a swarm of 40 attackers using pursuit guidance. It can be seen 

from the plot that the defenders were able to neutralize all 40 attackers before 

they can reach the HVU by coming up behind them and shooting them down. 

 

 Pursuit guidance engagement scenario Figure 11.  

PN guidance, on the other hand, gives rise to an engagement scenario 

where the attackers are going to pass in front of the defenders and out of their 

FOV in a relatively short period. Since the defenders will stop once no attackers 

are within their FOV, they will not give chase to the attackers from behind. This 

limits the amount of time the defenders have in dealing with the attackers, and 

subsequently results in a smaller chance of neutralizing the attackers. A typical 

engagement scenario using PN guidance is shown in Figure 12. 
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 Typical engagement scenario using PN guidance Figure 12.  

We can see from this engagement scenario that if attackers are able to 

get pass the defenders, they can reach the HVU without any hindrance, resulting 

in high probabilities of HVU being destroyed. Figure 13 shows the engagement 

scenario where five defenders are deployed against a swarm of 40 attackers 

using PN guidance. The scenario shows that some of the attackers were able to 

get past the defenders because of the short time period they were passing into 

the FOV of the defenders. 

Defender’s motion 

Attacker’s motion 

Defender’s FOV 
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 Proportional Navigation guidance engagement scenario Figure 13.  

2. Number of Defenders 

When the number of defenders is increased, each defender will have 

fewer attackers to deal with. Hence, the defenders should be able to neutralize 

the attackers with greater ease. To compare the effects of increasing the number 

of defenders, we vary the number of defenders from 1 to 25. The speed ratio is 

kept at 1.1 for each of the simulation run. Table 3 summarizes the objective 

values obtained and Figure 14 plots the values for comparison. 

The plot shows that increasing the number of defenders does indeed 

improve the chances that the HVU survives. One observation here is that the 

MOE increases almost proportionally with the increase of defenders, up to 10 

defenders when the probability of HVU surviving increases up to around 0.94. 

Increasing the number of defenders beyond 10 gives diminishing returns, with 

the probability increasing slightly to 0.9978 with 15 defenders (a 99.78% chance 

of HVU surviving). We can deduce from this result that each defender can take 

down four attackers efficiently in this particular engagement scenario. Any 

additional defenders may just mean that defenders are idling after defeating their 

own share of attackers, thus reducing the utility of these defenders. 
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Parameter 
Number 

of 
defenders 

MOE 

Mean Standard 
deviation 

# of 
Defenders 

1 0.000000 0.000000 
2 0.074510 0.057751 
3 0.171997 0.282923 
4 0.222126 0.294244 
5 0.239250 0.301488 
6 0.434544 0.334362 
7 0.497450 0.314897 
8 0.698302 0.213622 
9 0.827713 0.134149 

10 0.935115 0.065392 
15 0.997801 0.001932 
20 0.999950 0.000038 
25 0.999998 0.000002 

Table 3.   Measure of Effectiveness for varying number of defenders 

 

 Comparison for varying number of defenders Figure 14.  

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

0 5 10 15 20 25 30Pr
ob

ab
ili

ty
 o

f H
VU

 su
rv

iv
in

g,
 p

(T
) 

Number of Defenders 

Effect of Number of Defenders 



 30 

3. Speed Ratio 

The speed of the defenders is now varied between 10m/s and 30m/s. With 

the attackers’ speed at 25m/s, this corresponds to speed ratios between 0.4348 

and 1.3043. Five defenders are deployed in each case. Both pursuit guidance 

and PN guidance are evaluated for their effectiveness at the different speed 

ratios. Table 4 summarizes the objective values obtained and Figure 15 plots the 

values for comparison. 

The MOE when PN guidance is used does not seem to have a significant 

difference, statistically speaking, when the speed ratio is above 0.74. However, 

the defenders generally seemed to perform better at lower speed ratios between 

0.65 and 0.70. A probable reasoning behind this is that at lower speed ratios, the 

attackers remain within the defenders’ FOV for a longer time, allowing longer 

dwell times for the defenders to neutralize the attackers. Having said that though, 

the attackers are expected to be intercepted and neutralized at a distance closer 

to the HVU when the speed ratio is lower. This means the safety margin is 

smaller and the HVU may come under fire if the attackers carry weapons with 

longer range. At even lower speed ratios, we can see that the performance 

decreases dramatically. One possible reason is that at lower speeds, the 

defenders have to aim at a point far ahead of the attacker to be able to intercept 

the attackers using PN guidance. If they do that though, the attackers may be at 

the edge of their FOV, lowering their hit rate against the attackers. The attackers 

may be even out of the FOV of the attackers if the speed of the defender is low 

enough, and the defenders will be unable to shoot at the attackers. 

On the other hand, when pursuit guidance is used, a surprising result is 

obtained. The MOE for simulated speed ratios between about 0.4348 and 1.304 

when pursuit guidance is used is either 1 or close to one. This means that the 

HVU is almost guaranteed to survive regardless of the speed of the defenders. 

Additional simulations are run at speeds of 5m/s, 1m/s and 0.01m/s, 

corresponding to speed ratio of 0.2174, 0.0435 and 0.0004 respectively. 
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Parameter Guidance 
Law used 

Speed of 
Defenders 

(m/s) 

Speed 
Ratio 

MOE 

Mean Standard 
Deviation 

Speed 
Ratio 

PN 

10 0.4348 0.000 0.000 
11 0.4783 0.000 0.000 
12 0.5217 0.000 0.000 
13 0.5652 0.000 0.000 
14 0.6087 0.020 0.004 
15 0.6522 0.675 0.326 
16 0.6957 0.571 0.377 
17 0.7391 0.230 0.317 
18 0.7826 0.246 0.300 
19 0.8261 0.168 0.265 
20 0.8696 0.283 0.295 
21 0.9130 0.257 0.269 
22 0.9565 0.344 0.302 
23 1.0000 0.350 0.316 
24 1.0435 0.207 0.258 
25 1.0870 0.239 0.301 
30 1.3043 0.144 0.230 

Pursuit 

0.01 0.0004 0.188 0.007 
1 0.0435 0.872 0.004 
5 0.2174 1.000 0.000 

10 0.4348 1.000 0.000 
11 0.4783 1.000 0.000 
12 0.5217 1.000 0.000 
13 0.5652 1.000 0.000 
14 0.6087 1.000 0.000 
15 0.6522 1.000 0.000 
16 0.6957 0.996 0.000 
17 0.7391 0.996 0.000 
18 0.7826 0.999 0.000 
19 0.8261 1.000 0.000 
20 0.8696 1.000 0.000 
21 0.9130 1.000 0.000 
22 0.9565 1.000 0.000 
23 1.0000 1.000 0.000 
24 1.0435 1.000 0.000 
25 1.0870 1.000 0.000 
30 1.3043 0.973 0.125 

Table 4.   Measure of Effectiveness for pursuit guidance and PN guidance with 
varying speed ratios 
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 Comparison for varying speed ratios using pursuit and PN guidance Figure 15.  

This is done to observe whether the MOE will remain high when the 

defenders are almost stationary. The MOE only started decreasing at a speed 

ratio of 0.0435. Even at an almost stationary speed of 0.01m/s, the MOE is at 

0.188. What this means is that even if the defenders are barely moving, as long 

as they used pursuit guidance against the attackers, the HVU can still survive 

with an 18.8% chance. 

The reason that we get such unrealistic MOE for pursuit guidance is the 

way the defenders hit rate against the attackers is modeled. As described in 

Chapter II section B.4, the hit rate function for the attackers is modeled with a 

lognormal function. The way the lognormal function is shaped is such that the 

value decreases gradually from a peak value in an exponential way. However, 

the value does not go to zero even at very large values. In other words, there is a 

small but finite value for the hit rate function that is being integrated by the part of 

the cost function that calculates the survival rate of the attackers. Since pursuit 
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guidance will always point the defender in the direction where the attackers are, 

this small but finite value is constantly causing the probability of the attackers 

surviving (𝑞𝑙(𝑡)) to decrease. Figure 16 illustrates this situation where the 

probability that the attackers survives is constantly decreasing even when they 

should be out of the weapon range of the defenders. 

 

 Effect of small but finite values of hit rate function on 𝑞𝑙(𝑡) Figure 16.  

We can see from the trajectory of the attackers that the attackers almost 

always remain within a zone where the hit rate of the defenders against them is 

very low. However, since the defenders are barely moving in this case, the 

closing speed of the attackers is lower than when the defenders are moving at 

Plot of attackers changing 
color as 𝑞𝑙(𝑡) decreases 

Very low hit rates 

Low hit rates 

Moderate to high hit rates 
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faster speeds. Hence, the time that the attackers are within the defenders’ FOV 

is considerably long. Coupled with the fact that the attackers are always within 

the defenders’ FOV due to the nature of pursuit guidance, the result is that the 

integration of the low hit rate values over a long period of time reduces the 

probability of the attackers surviving to a point where they are considered 

neutralized in the simulation. 

This result is not observed when PN guidance is used because the 

attackers will go out of the defenders’ FOV when the speed of the defenders gets 

too low. At higher speed ratios, this effect will not be significant as the region of 

very low hit rate values will be traversed in a reasonably short period of time that 

it does not contribute much to lowering the survival rate of the attackers. 

We have to look into altering the modeling of the hit rate function of the 

defenders to limit the range at which the function can have a value. This will 

probably give more reasonable and more realistic results. This can be done in 

further studies on this subject. 
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IV. CONCLUSION AND RECOMMENDED FUTURE WORK 

A. CONCLUSION 

In this thesis, we have developed a simulation that allowed us to simulate 

various distributed strategies that can be used in the defense of a HVU against a 

swarm attack. A cost function is formulated to calculate probability that the HVU 

survives the swarm attack. This gives us a measure of effectiveness of each 

strategy used. 

The results have given us great insights into how some of the defender 

parameters used can influence the survival rate of the HVU. Pursuit guidance, 

normally not very effective in modern missile applications, has shown to be a 

rather effective strategy, and seemingly even better than the preferred PN 

guidance law. 

Having larger number of defenders improves the effectiveness of the 

defensive force, but beyond a certain number of defenders, the utility of the 

defenders will drop. The optimal ratio of defenders to attackers is shown to be 1 

to 4 for the particular scenario that we looked at. 

The simulations also showed that having high defender speeds might 

hinder, not help, the defense operation. A moderate speed that allows sufficient 

time on target, but yet able to intercept attackers at a reasonable distance from 

the HVU should be chosen. 

The results where pursuit guidance at low speeds perform surprisingly 

well reveals that the hit rate function used in the simulations still needs some 

more considerations to make the analysis more accurate. 

B. RECOMMENDED FUTURE WORK 

1. Other Guidance Methods or Strategies 

The simulation developed in this thesis provides a framework in which 

different guidance methods or defensive strategies can be evaluated for their 
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effectiveness. For example, Shin, 2011[6] describes a Earliest Intercept 

Geometry Guidance Law (EIGGL) that can be used for target allocation to 

minimize the distance that the attacker can cover, and hence maximizes the 

distance of the attackers to the HVU. 

An impact angle control guidance law is also described in the same paper. 

This guidance law optimizes the impact angle between the defender and the 

attacker during the time of intercept, effectively setting them up in a head-on 

collision course, which increases the chance of interception. These laws can be 

evaluated for their effectiveness in the swarm attack scenario that we have set 

up. 

2. Different Engagement Scenarios 

In this thesis, we have only looked at a particular engagement scenario 

where a HVU is moving in a straight line at a relatively slow speed, with attackers 

moving aggressively towards it from one direction. A HVU can come under a 

swarm attack in many other possible situations. For example, attackers can 

come from multiple directions, and may maneuver to avoid the defenders that are 

deployed against them. The HVU can be stationary, like an oilrig or even an on-

shore facility. All these scenarios can be modeled and simulated within this 

framework, and different defensive strategies can be evaluated to find out their 

effectiveness in such scenarios. 

3. Intent Recognition 

At the initial stage of the research for this thesis, a real time graphical 

simulation with intent recognition algorithm was being developed in the University 

of Nevada, Reno (UNR). The intention was to integrate this simulation with the 

simulation developed here to simulate the engagement in real time and display 

the engagement in 3D graphics. More importantly, the intent recognition 

algorithm would allow us to study the reaction of the defensive force when the 

hostile targets are hidden among neutral ones. Daniel Bigelow from UNR, came 

down to NPS to install the simulation for the integration. Unfortunately, even 
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though the simulation was successfully installed, the simulation was unstable due 

to the different hardware used here in NPS. Due to time constraints, this part of 

the thesis had to be abandoned, but future work can be done to further explore 

the possibilities of integrating the simulations. 

4. Hit Rate Function Modeling 

As discussed in the results section, the hit rate functions used currently 

may give us MOE that are misleading due to the small finite values of the hit rate 

function at large ranges. Further work is needed to come up with a hit rate 

function that has a finite range value and describes range effectiveness of real 

life weapons more accurately. 
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APPENDIX A. MATLAB® SIMULATION CODE 

This appendix contains the list of script files and function codes that were 

used in the simulation. 

A. SIMULATION RUN SCRIPT FILES 

%----------------------------------------------------------------------
% File: Evaluate_Scenario_Performance.m  
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Sets up the parameters for cost evaluation algorithm 
% - Runs trajectory generation scripts 
% - Computes cost and plots attacker and defender trajectories 
% Inputs: Discretization time and space, method of evaluation, number  
%  of attackers, number of defenders 
% Outputs: Objective value 
%----------------------------------------------------------------------  
function ObjValue = Evaluate_Scenario_Performance(Discretization,  

Methods, 
NumberofAttackers, 
NumberofDefenders) 

 
global CONSTANTS OFFLINE_TRAJECTORIES 
       PDF_VALUES MESHED_PDF_VALUES 
       DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES 
       DIFFERENTIATION_MATRICES 
       INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS; 
 
global p0 N % To interface with Kaminer code without editing  
 
warning('off', 'all') 
% This suppresses the warning that future versions of MATLAB® will not 
% support evaluating scripts with feval, which is what I'm using to 
% evaluate arbitrary versions of Ding's heuristic 
 
addpath('./performance_related_functions', '-begin'); 
addpath('./performance_related_functions/Parameterized_Control_Kernel') 
addpath('./performance_related_functions/hit_rate_functions') 
addpath('./performance_related_functions/cline') 
addpath('./code', '-begin') %Ding's code 
 
Heuristic = 'PlotOneManyBadGuysV11'; 
 
% PDF choices 
CONSTANTS.ParameterSpace.PFD_Choices 

={'Independent','Uniform','Uniform'}; 
 
%---Simulation Time Range---% 
CONSTANTS.Time.T0=0; %start time 
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%-----Parameter Ranges------% 
%----------------------------------------------------% 
%   W0 and WF should be 1xParameterSpace.Dimension   % 
% arrays with the starting points and ending points  % 
% respectively of each parameter's domain.           % 
% When attackers have identical parameter ranges,    % 
% the shortcut of listing just the number of         % 
% parameters per attacker can be taken.              % 
%----------------------------------------------------% 
CONSTANTS.ParameterSpace.W0=[8000,0]; %start of each parameter 
CONSTANTS.ParameterSpace.WF=[8100,500]; %end of each parameter 
 
%--------------------------------------------------------------------- 
% The following variables are not meant to be modified. 
% They are set in the function call and just relabeled here to match 
% with previous code.  
%--------------------------------------------------------------------- 
N = Discretization(1); 
CONSTANTS.N = N; % This redundant declaration is here, because the  
% heuristics and Kaminer code need N as a global variable to be run 
% with minimal editing (to be run without rewriting them as function 
% calls), but the control code and many subroutines use CONSTANTS.N 
 
% Number of probabilistic parameters per attacker. In this case, 
% starting position (in two dimensions). 
CONSTANTS.ParameterSpace.Dimension = 2; 
 
% Number of attackers 
% This is part of the substruct of attacker specific constants, for 
% historical reasons. 
CONSTANTS.ATTACKERS.Na = NumberofAttackers;  
% Number of searchers  
CONSTANTS.Ns = NumberofDefenders;  
%---------------------------------------------------------------------     
 
%---------------------------------------------------------------------  
% Set the constants for the hit rate functions and the filenames 
%---------------------------------------------------------------------  
Calibrate_Hit_Rate_Functions 
%---------------------------------------------------------------------  
 
%--------------------------------------------------------------------- 
% Create DIFFERENTIATION_MATRICES, INTEGRATION_WEIGHTS,  
% MESHED_INTEGRATION_WEIGHTS, DISCRETIZATION VALUES, and  
% MESHED_DISCRETIZATION_VALUES.  
%--------------------------------------------------------------------- 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'); 
disp(Heuristic); 
disp('--------------------------------------------------------'); 
disp('Discretization:'); 
disp(Discretization); 
Calculate_Methods(Discretization, Methods); 
disp('--------------------------------------------------------'); 
%--------------------------------------------------------------------- 
 



 41 

 [x_a_i, x_d_a_i, x_0_a_i] = 
RunDingsSimulation(Heuristic,NumberofDefenders, 

NumberofAttackers); 
%---------------------------------------------------------------------                                         
 
for s = 1:NumberofAttackers 
    X =  interp1(x_a_i{s}(:,3),[x_a_i{s}(:,1),x_a_i{s}(:,2)], 

DISCRETIZATION_VALUES{1},'spline'); 
    x_a_i{s}(:,3) = DISCRETIZATION_VALUES{1}(:); 
    x_a_i{s}(:,1) = X(:,1); 
    x_a_i{s}(:,2) = X(:,2); 
end 
for s = 1:NumberofDefenders 
    X = interp1(x_d_a_i{s}(:,3),[x_d_a_i{s}(:,1),x_d_a_i{s}(:,2)], 

DISCRETIZATION_VALUES{1},'spline'); 
    x_d_a_i{s}(:,3) = DISCRETIZATION_VALUES{1}(:); 
    x_d_a_i{s}(:,1) = X(:,1); 
    x_d_a_i{s}(:,2) = X(:,2); 
end 
X = interp1(x_0_a_i(:,3),[x_0_a_i(:,1),x_0_a_i(:,2)], 

DISCRETIZATION_VALUES{1},'spline'); 
x_0_a_i(:,3) = DISCRETIZATION_VALUES{1}(:); 
x_0_a_i(:,1) = X(:,1); 
x_0_a_i(:,2) = X(:,2); 
%--------------------------------------------------------------------- 
 
%--------------------------------------------------------------------- 
% Plot various desired plots. 
%--------------------------------------------------------------------- 
Result_Plots; 
%--------------------------------------------------------------------- 
 
%---------------------------------------------------------------------  
% Calculate the probability function just for the a_i trajectories  
%---------------------------------------------------------------------  
[p, q] = Probability_Function(x_a_i,x_d_a_i,x_0_a_i); 
% Probability that the HVU does not survive at time T. 
ObjValue = 1-p(end); 
%---------------------------------------------------------------------  
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%----------------------------------------------------------------------
% File: Run_Scenarios.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Runs script to load 50 pre-generated attackers’ position 
% - Runs Evaluate_Scenario_Performance.m with appropriate parameters. 
% - Logs evaluated performance for the 50 runs 
% Inputs: None 
% Outputs: Array of objective values 
%----------------------------------------------------------------------  
global p0 
  
ObjValues = zeros(50,1); 
  
for scn = 1:50 
    p0 = load(['Scenario' int2str(scn) '.dat']); 
    ObjValues(scn) = Evaluate_Scenario_Performance([500,1,1],[0,0,0],  

40,5); 
end 
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B. ATTACKER & DEFENDER TRAJECTORY GENERATION CODE 

%----------------------------------------------------------------------
% File: RunMoreThanOneBadGuy.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Generates optimized attacker trajectory based on given 
%    limitations 
% Inputs: None 
% Outputs: Time for optimized trajectory 
%----------------------------------------------------------------------  
global vShip psiShip v0 vf vmin vmax psidotmax p0 a1 lambda0 lambdaf tf  

p0ship BadGuyTotal N DefenderTotal 
global p_swarm Defender p_ship Dindex tf 
 
% Initial conditions for the ship 
vShip = 5;  %m/sec 
psiShip = pi/2; %rad 
p0ship = [0;0]; 
 
% Initial conditions for the bad guys 
% Initial and final velocities of the bad guys in m/sec 
v0 = 23; vf = 23; 
 
% Limits for the bad guys 
% Max and min speeds of the bad guy 
vmin = 1; vmax = 23; 
% Turn rate limit for the bad guy 
psidotmax = 0.1; 
 
% Initial guess on the hit time 
tf = norm(p0(:,1) - p0ship)/vmax; 
for i = 2:BadGuyTotal 
    tf = min(tf,norm(p0(:,i) - p0ship)/vmax); 
end 
  
options = optimset('TolFun',.1,'maxiter',100,'MaxFunEvals',100, 

'Display', 'on'); 
[x,fval,exitflag,output] = 

fminsearch(@MoreThanOneBadGuyCost,tf,options); 
  
% This ends the initialization of BadGuy part 
tf = x(1); 
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%----------------------------------------------------------------------
% File: MoreThanOneBadGuy.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Computes cost for a single attacker 
% Inputs: Number of attackers, final time 
% Outputs: Cost for single attacker trajectory 
%----------------------------------------------------------------------  
function  J = MoreThanOneBadGuy(BadGuyNumber,tf0) 
 
global a1 vShip psiShip v0 vf vmin vmax psidotmax p0 p0ship N 
 
% Time step 
dt = tf0/N; 
 
% Extract optimization parameters 
x0 = p0(:,BadGuyNumber); 
psi0 = atan2(x0(2)-p0ship(2),x0(1)-p0ship(1))-pi; 
 
% Initialize 
xf = p0ship + [vShip*cos(psiShip); 
vShip*sin(psiShip)]*(tf0-(BadGuyNumber - 1)*dt)'; 
xp0 = [cos(psi0); sin(psi0)]; 
 
perror = [cos(psiShip) sin(psiShip);-sin(psiShip) cos(psiShip)] 

*(x0 - p0ship); 
 
if  perror(2) >= 0 
    psif = psiShip - pi/2; 
else 
    psif = psiShip + pi/2; 
end 
 
xpf = [cos(psif); sin(psif)]; 
xpp0 = zeros(2,1); xppf = zeros(2,1); 
xppp0 = zeros(2,1); xpppf = zeros(2,1); 
 
% Define speed profile 
lambda0 = v0/norm(xp0); 
lambdaf = vf/norm(xpf); 
 
% Evaluate UAV path coefficients 
if (abs(lambda0 - lambdaf) < 1e-6) 
    tauf = lambda0*tf0; 
else 
    tauf = (lambdaf - lambda0)*tf0/log(lambdaf/lambda0); 
end 
% The 7th order coefficients below are obtained using the same steps as 
% in Ghabcheloo paper 
% A = [1 0 0 0 0 0 0 0; 
%      0 1 0 0 0 0 0 0; 
%      0 0 2 0 0 0 0 0; 
%      0 0 0 6 0 0 0 0; 
%      1 tauf tauf^2 tauf^3 tauf^4 tauf^5 tauf^6 tauf^7; 
%      0 1 2*tauf 3*tauf^2 4*tauf^3 5*tauf^4 6*tauf^5 7*tauf^6; 
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%      0 0 2 6*tauf 12*tauf^2 20*tauf^3 30*tauf^4 42*tauf^5; 
%      0 0 0 6 24*tauf 60*tauf^2 120*tauf^3 210*tauf^4]; 
% 
% b = [x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]'; 
% 
% a1 = inv(A)*b; 
  
a1 = [x0 ... 

xp0 ... 
xpp0/2 ... 
xppp0/6 ... 
(35*xf)/tauf^4 - (35*x0)/tauf^4 - (20*xp0)/tauf^3 – 

(15*xpf)/tauf^3 – (5*xpp0)/tauf^2 + (5*xppf)/(2*tauf^2) – 
(2*xppp0)/(3*tauf) - xpppf/(6*tauf) ... 

(84*x0)/tauf^5 - (84*xf)/tauf^5 + (45*xp0)/tauf^4 +  
(39*xpf)/tauf^4 + (10*xpp0)/tauf^3 - (7*xppf)/tauf^3 +  
xppp0/tauf^2 + xpppf/(2*tauf^2) ... 

(70*xf)/tauf^6 - (70*x0)/tauf^6 - (36*xp0)/tauf^5 –  
(34*xpf)/tauf^5 - (15*xpp0)/(2*tauf^4) +  
(13*xppf)/(2*tauf^4) - (2*xppp0)/(3*tauf^3) –  
xpppf/(2*tauf^3) ... 

(20*x0)/tauf^7 - (20*xf)/tauf^7 + (10*xp0)/tauf^6 +  
(10*xpf)/tauf^6 + (2*xpp0)/tauf^5 - (2*xppf)/tauf^5 +  
xppp0/(6*tauf^4) + xpppf/(6*tauf^4)]; 

 
v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0; 
 
for n = 0:N 
 
    t = n*dt; 
    if (abs(lambda0 - lambdaf) < 1e-6) 
        tau = t/tf0*tauf; 
    else 
        tau = tauf*((lambdaf/lambda0)^(t/tf0) - 1)*lambda0/(lambdaf- 

lambda0); 
    end 
 
    % Compute UAV path and its derivatives 
    p = zeros(2,1); 
    for i = 1:8 
        p = p + a1(:,i)*tau^(i-1); 
    end 
    p_p = zeros(2,1); 
    for i = 2:8 
        p_p = p_p + (i-1)*a1(:,i)*tau^(i-2); 
    end 
    p_pp = zeros(2,1); 
    for i = 3:8 
        p_pp = p_pp + (i-1)*(i-2)*a1(:,i)*tau^(i-3); 
    end 
 
    % Compute speed 
    lambda = lambda0 + (lambdaf-lambda0)*tau/tauf; 
    v = lambda*norm(p_p); 
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    % Compute signed curvature in 2D 
    curv = (p_pp(2)*p_p(1) - p_pp(1)*p_p(2))/norm(p_p)^3; 
    psidot_max = max(psidot_max,v*curv); 
    v_max = max(v,v_max); 
    v_min = min(v,v_max); 
 
end 
 
J = tf0 + 10*(psidot_max - psidotmax)^2/psidotmax^2 + (v_min –  

vmin)^2/vmin^2 + 1e6*(v_max - vmax)^2/vmax^2; 
 
return 
 
 
 
 
 
 
 
 
%----------------------------------------------------------------------
% File: MoreThanOneBadGuyCost.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Computes total cost for all attackers 
% Inputs: Final time 
% Outputs: Total cost for all attackers 
%----------------------------------------------------------------------  
function  J = MoreThanOneBadGuyCost(tf0) 
 
global BadGuyTotal 
 
J = tf0; 
 
for i = 1:1:BadGuyTotal 
    J = J + MoreThanOneBadGuy(i,tf0); 
end 
 
return 
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%----------------------------------------------------------------------
% File: MoreThanOneBadGuyData.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Calculate attacker position and velocity 
% Inputs: Number of attackers, final time, current simulation time 
% Outputs: Position, speed, turn rate, velocity of attacker 
%----------------------------------------------------------------------  
function  [p,v,psidot,vel] = MoreThanOneBadGuyData(BadGuyNumber,tf0,t) 
 
global vShip psiShip v0 vf p0 p0ship N % vmin vmax psidotmax 
 
% Time step 
dt = tf0/N; 
 
% Extract optimization parameters 
x0 = p0(:,BadGuyNumber); 
psi0 = atan2(x0(2)-p0ship(2),x0(1)-p0ship(1))-pi; 
 
% Initialize 
xf = p0ship + [vShip*cos(psiShip); vShip*sin(psiShip)]*(tf0- 

(BadGuyNumber - 1)*dt)'; 
xp0 = [cos(psi0); sin(psi0)]; 
 
perror = [cos(psiShip) sin(psiShip);-sin(psiShip) cos(psiShip)]*(x0- 

p0ship); 
 
if  perror(2) >= 0 
    psif = psiShip - pi/2; 
else 
    psif = psiShip + pi/2; 
end 
 
xpf = [cos(psif); sin(psif)]; 
xpp0 = zeros(2,1); xppf = zeros(2,1); 
xppp0 = zeros(2,1); xpppf = zeros(2,1); 
 
% Define speed profile 
lambda0 = v0/norm(xp0); 
lambdaf = vf/norm(xpf); 
 
% Evaluate UAV path coefficients 
if (abs(lambda0 - lambdaf) < 1e-6) 
    tauf = lambda0*tf0; 
else 
    tauf = (lambdaf - lambda0)*tf0/log(lambdaf/lambda0); 
end 
% The 7th order coefficients below are obtained using the same steps as 
% in Ghabcheloo paper 
% A = [1 0 0 0 0 0 0 0; 
%      0 1 0 0 0 0 0 0; 
%      0 0 2 0 0 0 0 0; 
%      0 0 0 6 0 0 0 0; 
%      1 tauf tauf^2 tauf^3 tauf^4 tauf^5 tauf^6 tauf^7; 
%      0 1 2*tauf 3*tauf^2 4*tauf^3 5*tauf^4 6*tauf^5 7*tauf^6; 
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%      0 0 2 6*tauf 12*tauf^2 20*tauf^3 30*tauf^4 42*tauf^5; 
%      0 0 0 6 24*tauf 60*tauf^2 120*tauf^3 210*tauf^4]; 
% 
% b = [x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]'; 
% 
% a1 = inv(A)*b; 
  
a1 = [x0 ... 

xp0 ... 
xpp0/2 ... 
xppp0/6 ... 
(35*xf)/tauf^4 - (35*x0)/tauf^4 - (20*xp0)/tauf^3 – 

(15*xpf)/tauf^3 – (5*xpp0)/tauf^2 + (5*xppf)/(2*tauf^2) – 
(2*xppp0)/(3*tauf) - xpppf/(6*tauf) ... 

(84*x0)/tauf^5 - (84*xf)/tauf^5 + (45*xp0)/tauf^4 +  
(39*xpf)/tauf^4 + (10*xpp0)/tauf^3 - (7*xppf)/tauf^3 +  
xppp0/tauf^2 + xpppf/(2*tauf^2) ... 

(70*xf)/tauf^6 - (70*x0)/tauf^6 - (36*xp0)/tauf^5 –  
(34*xpf)/tauf^5 - (15*xpp0)/(2*tauf^4) +  
(13*xppf)/(2*tauf^4) - (2*xppp0)/(3*tauf^3) –  
xpppf/(2*tauf^3) ... 

(20*x0)/tauf^7 - (20*xf)/tauf^7 + (10*xp0)/tauf^6 +  
(10*xpf)/tauf^6 + (2*xpp0)/tauf^5 - (2*xppf)/tauf^5 +  
xppp0/(6*tauf^4) + xpppf/(6*tauf^4)]; 

  
if (abs(lambda0 - lambdaf) < 1e-6) 
    tau = t/tf0*tauf; 
else 
    tau = tauf*((lambdaf/lambda0)^(t/tf0) - 1)*lambda0/(lambdaf-
lambda0); 
end 
 
% Compute UAV path and its derivatives 
p = zeros(2,1); 
for i = 1:8 
    p = p + a1(:,i)*tau^(i-1); 
end 
p_p = zeros(2,1); 
for i = 2:8 
    p_p = p_p + (i-1)*a1(:,i)*tau^(i-2); 
end 
p_pp = zeros(2,1); 
for i = 3:8 
    p_pp = p_pp + (i-1)*(i-2)*a1(:,i)*tau^(i-3); 
end 
 
% Compute speed 
lambda = lambda0 + (lambdaf-lambda0)*tau/tauf; 
v = lambda*norm(p_p); 
vel = lambda*p_p; 
 
% Compute signed curvature in 2D 
curv = (p_pp(2)*p_p(1) - p_pp(1)*p_p(2))/norm(p_p)^3; % THIS IS IN M 
psidot = v*curv; 
end 
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%----------------------------------------------------------------------
% File: PlotOneManyBadGuysV11.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - Each defender calculates a weighted centroid and effective velocity  
% - for the attackers in its FOV. 
% - A turn rate command is generated using PN guidance using the  
% - calculated centroid and velocity. 
% - This version divides up the attackers and assigns them to each  
% - defender. The defenders will stop once they lose sight of attackers  
% - assigned to them. 
% - This version also includes a neutralizing algorithm, in which an  
% - attacker is neutralized when it stays within the FOV and attacking  
% - range of a defender for a set amount of time. 
% Inputs: Initial ship and swarm parameters 
% Outputs: Defender trajectory 
%----------------------------------------------------------------------  
global vShip psiShip v0 vf N p0 DefenderTotal 
global p_swarm Defender p_ship Dindex tf 
 
% PlotOneManyBadGuysV11 - Guidance Version 11 
 
dt = tf/N; % Time Step 
p_ship = zeros(N+1,3); 
for i = 0:N 
    t = i*dt; 
    p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip) 
vShip*sin(psiShip)]*t]; 
end 
 
% Assigning attackers to defenders 
% This algorithm assumes attackers >= defenders 
% Attacker groups are assigned to defenders based on their position 
Assign=zeros(DefenderTotal,2); 
Assign(DefenderTotal,1)=1; 
Assign(DefenderTotal,2)=floor(BadGuyTotal/DefenderTotal); 
for i=DefenderTotal-1:-1:1 
    Assign(i,1)=Assign(i+1,2)+1; 
    Assign(i,2)=Assign(i+1,2)+floor(BadGuyTotal/DefenderTotal); 
end 
for i=1:mod(BadGuyTotal,DefenderTotal) 
    Assign(1:i,2)=Assign(1:i,2)+1; 
end 
for i=1:mod(BadGuyTotal,DefenderTotal)-1 
    Assign(1:i,1)=Assign(1:i,1)+1; 
end 
% Centroid of initial position of attackers 
APos = zeros(2,DefenderTotal); 
for j=1:DefenderTotal 
    for i = Assign(j,1):Assign(j,2) 
        APos(:,j) = APos(:,j) + p0(:,i); 
    end 
    APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1); 
end 
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% Defenders parameters 
MaxOmega = 1;       % Max turn rate 
Dfov = 120;         % Field of view (deg) 
Dv = 25;            % Speed (m/s) 
 
% Initialize matrices 
range_max = 0; v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0; 
p_test = zeros(N+1,2); 
p_swarm = zeros(N+1,(BadGuyTotal*2)+1); v_swarm = 
zeros(N+1,BadGuyTotal+1); psi_dot = zeros(N+1,BadGuyTotal+1); 
pcombined = zeros(1,BadGuyTotal*2); vcombined = zeros(1,BadGuyTotal); 
psidotcombined = zeros(1,BadGuyTotal); 
Dpos = zeros(2,DefenderTotal); Dpsi = zeros(DefenderTotal,1); 
Di = zeros(2,DefenderTotal);Defender = zeros(N+1, DefenderTotal*2+1); 
VelD = zeros(2,DefenderTotal); 
Range = zeros(DefenderTotal,N+1,BadGuyTotal+1); Dindex = 
zeros(DefenderTotal,1); 
Alog = zeros(N+1, DefenderTotal*2+1); HeadingLog = zeros(N+1, 
DefenderTotal+1); 
NeutAtt = zeros(BadGuyTotal, DefenderTotal + 1); 
SimEnd = 0; 
 
% Initial positions and heading for defenders 
for i = 1:DefenderTotal 
    Dpos(:,i) = p0ship + (i-1)*[0;25] + [10;0]; 
    % Velocity vector pointed towards centroid of attackers 
    VelD(:,i) = Dv*(APos(:,i)-Dpos(:,i))/norm(APos(:,i)-Dpos(:,i)); 
    Dpsi(i) = pi/2 - atan2(VelD(2,i), VelD(1,i)); 
end 
 
for i = 0:N 
    t = i*dt; 
    p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip)  

vShip*sin(psiShip)]*t]; 
 
    WPos = zeros(2, DefenderTotal); 
    WVel = zeros(2, DefenderTotal); 
    W = zeros(DefenderTotal,1); 
 
    for j = 1:BadGuyTotal 
        [p,v,psidot,vel] = MoreThanOneBadGuyData(j,tf,t); 
        pcombined(1,((2*j)-1):(2*j)) = p'; 
        vcombined(1,j) = v; 
        psidotcombined(1,j) = psidot; 
        % If attacker is already neutralized skip to next one 
        if (NeutAtt(j,DefenderTotal+1) ~= 0) 
            continue; 
        end 
 
        for k = 1:DefenderTotal 
            % Attacker not assigned to this defender, skip to next  

defender 
            if ((j<Assign(k,1))||(j>Assign(k,2))) 
                continue; 
            end 
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            % Calculate range to attacker 
            Li = norm(p-Dpos(:,k)); 
            Range(k,i+1,1) = t; 
            Range(k,i+1,j+1) = Li; 
 
            Ai = (p-Dpos(:,k))/Li;  % Unit LOS vector to attacker 
            dVel = VelD(:,k) - vel; 
            Vc = Ai'*dVel; % Closing velocity 
 
            % Calculate LOS angle 
            temp = atan2(Ai(2),Ai(1)); 
            LOS = (temp-(pi/2-Dpsi(k)))*180/pi; 
            while (abs(LOS) > 180) 
                LOS = -1*sign(LOS)*(360 - abs(LOS)); 
            end 
            % Sum weighted position and velocity if within FOV 
            if (abs(LOS) <= Dfov/2) 
                if (Li < 150) 
                    % Attacker within FOV and attacking range of  

  % defender, increase counter (one time step) 
                    NeutAtt(j,k) = NeutAtt(j,k) + 1; 
                    % If attacker stays within attacking range for X 

  % secs attacker considered neutralized 
                    if (NeutAtt(j,k)*dt > 3) 
                        NeutAtt(j,DefenderTotal+1) = i; 
                        continue; 
                    end 
                else 
                    NeutAtt(j,k) = 0; % Reset neutralize counter if  

attacker goes out of range 
                end 
                WPos(:,k) = WPos(:,k) + (Vc/Li)*p; 
                WVel(:,k) = WVel(:,k) + (Vc/Li)*vel; 
                W(k) = W(k) + (Vc/Li); 
            else 
                NeutAtt(j,k) = 0; % Reset neutralize counter if  

attacker goes out of FOV 
            end 
        end 
    end 
 
    % If all attackers neutralized, end simulation 
    if ((prod(NeutAtt(:,DefenderTotal+1)) ~= 0) && (SimEnd == 0)) 
        SimEnd = i; 
    end 
 
    % Guidance algorithm 
    for k = 1:DefenderTotal 
        Defender(i+1, 1) = t; 
        Defender(i+1, (2*k):(2*k+1)) = Dpos(:,k)'; 
        % Defender lost sight of attacker, stop guidance 
        if (abs(W(k)) < 1e-15) 
            continue; 
        else % Attacker(s) in FOV 
            % Calculate weighted centroid and velocity 
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            CPos = WPos(:,k)/W(k); 
            CVel = WVel(:,k)/W(k); 
        end 
        Alog(i+1, 1) = t; 
        Alog(i+1, (2*k):(2*k+1)) = CPos'; 
        Li = norm(CPos - Dpos(:,k));    % Calculate range to centroid 
        Ai = (CPos-Dpos(:,k))/Li;       % Unit LOS vector to centroid 
        dVel = VelD(:,k) - CVel; 
        Vc = Ai'*dVel;                  % Closing velocity of centroid 
        % LOS rate of centroid 
        LOSrate = (dVel(1)*Ai(2)-dVel(2)*Ai(1))/Li; 
        temp = atan2(Ai(2),Ai(1)); 
        LOS = (temp-(pi/2-Dpsi(k))); 
        % Calculate turn rate using PN guidance 
        omega = 6*LOSrate; 
        % Limit turn rate by MaxOmega 
        if (abs(omega) > MaxOmega) 
            omega = sign(omega)*MaxOmega; 
        end 
        turn = -1*omega*dt;                         % Turn angle 
        Dpsi(k) = Dpsi(k) + turn;                   % Update heading 
        VelD(:,k) = Dv*[sin(Dpsi(k));cos(Dpsi(k))]; % Update velocity 
        Dpos(:,k) = Dpos(:,k) + VelD(:,k)*dt;       % Update position 
         
        HeadingLog(i+1,1) = t; 
        HeadingLog(i+1, k+1) = pi/2-Dpsi(k); 
    end 
 
    v_max = max(v,v_max); 
    v_min = min(v,v_max); 
 
    p_swarm(i+1,:) = [t pcombined]; 
    v_swarm(i+1,:) = [t vcombined]; 
    psi_dot(i+1,:) = [t psidotcombined]; 
 
    % Update centroid of position of attackers 
    APos = zeros(2,DefenderTotal); 
    for j=1:DefenderTotal 
        for k = Assign(j,1):Assign(j,2) 
            APos(:,j) = APos(:,j) + pcombined(1,2*k-1:2*k)'; 
        end 
        APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1); 
    end 
 
    p_test(i+1,:) = p'; 
end 
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%----------------------------------------------------------------------
% File: PlotOneManyBadGuysV12.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - The unit LOS vector to every attacker in the defenders' FOV is  
% - combined to obtain the heading required to intercept the attackers. 
% - The LOS vectors are weighted by the attackers' range and velocity. 
% - This version divides up the attackers and assigns them to each  
% - defender. The defenders will stop once they lose sight of attackers  
% - assigned to them. 
% - This version also includes a neutralizing algorithm, in which an  
% - attacker is neutralized when it stays within the FOV and attacking  
% - range of a defender for a set amount of time. 
% Inputs: Initial ship and swarm parameters 
% Outputs: Defender trajectory 
%----------------------------------------------------------------------  
global vShip psiShip v0 vf N p0 DefenderTotal 
global p_swarm Defender p_ship Dindex tf 
 
dt = tf/N; % Time Step 
p_ship = zeros(N+1,3); 
for i = 0:N 
    t = i*dt; 
    p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip) 
vShip*sin(psiShip)]*t]; 
end 
 
% Assigning attackers to defenders 
% This algorithm assumes attackers >= defenders 
% Attacker groups are assigned to defenders based on their position 
Assign=zeros(DefenderTotal,2); 
Assign(DefenderTotal,1)=1; 
Assign(DefenderTotal,2)=floor(BadGuyTotal/DefenderTotal); 
for i=DefenderTotal-1:-1:1 
    Assign(i,1)=Assign(i+1,2)+1; 
    Assign(i,2)=Assign(i+1,2)+floor(BadGuyTotal/DefenderTotal); 
end 
for i=1:mod(BadGuyTotal,DefenderTotal) 
    Assign(1:i,2)=Assign(1:i,2)+1; 
end 
for i=1:mod(BadGuyTotal,DefenderTotal)-1 
    Assign(1:i,1)=Assign(1:i,1)+1; 
end 
 
% Centroid of initial position of attackers 
APos = zeros(2,DefenderTotal); 
for j=1:DefenderTotal 
    for i = Assign(j,1):Assign(j,2) 
        APos(:,j) = APos(:,j) + p0(:,i); 
    end 
    APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1); 
end 
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% Defenders parameters 
MaxOmega = 1;       % Max turn rate 
Dfov = 120;          % Field of view (deg) 
Dv = 25;            % Speed (m/s) 
 
% Initialize matrices 
range_max = 0; v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0; 
p_test = zeros(N+1,2); 
p_swarm = zeros(N+1,(BadGuyTotal*2)+1); v_swarm = 
zeros(N+1,BadGuyTotal+1); psi_dot = zeros(N+1,BadGuyTotal+1); 
pcombined = zeros(1,BadGuyTotal*2); vcombined = zeros(1,BadGuyTotal); 
psidotcombined = zeros(1,BadGuyTotal); 
Dpos = zeros(2,DefenderTotal); Dpsi = zeros(DefenderTotal,1); 
Di = zeros(2,DefenderTotal);Defender = zeros(N+1, DefenderTotal*2+1); 
VelD = zeros(2,DefenderTotal); 
Range = zeros(DefenderTotal,N+1,BadGuyTotal+1); Dindex = 
zeros(DefenderTotal,1); 
Alog = zeros(N+1, DefenderTotal*2+1); HeadingLog = zeros(N+1, 
DefenderTotal+1); 
NeutAtt = zeros(BadGuyTotal, DefenderTotal + 1); 
SimEnd = 0; 
 
% Initial positions and heading for defenders 
for i = 1:DefenderTotal 
    Dpos(:,i) = p0ship + (i-1)*[0;25] + [10;0]; 
    % Velocity vector pointed towards centroid of attackers 
    VelD(:,i) = Dv*(APos(:,i)-Dpos(:,i))/norm(APos(:,i)-Dpos(:,i)); 
    Dpsi(i) = pi/2 - atan2(VelD(2,i), VelD(1,i)); 
end 
 
for i = 0:N 
    t = i*dt; 
 
    Di = zeros(2, DefenderTotal); 
    DEN = zeros(DefenderTotal,1); 
    for j = 1:BadGuyTotal 
        [p,v,psidot,vel] = MoreThanOneBadGuyData(j,tf,t); 
        pcombined(1,((2*j)-1):(2*j)) = p'; 
        vcombined(1,j) = v; 
        psidotcombined(1,j) = psidot; 
 
        for k = 1:DefenderTotal 
            % Attacker not assigned to this defender, skip to next  

% defender 
            if ((j<Assign(k,1))||(j>Assign(k,2))) 
                continue; 
            end 
            % Calculate range to attacker 
            Li = norm(p-Dpos(:,k)); 
            Range(k,i+1,1) = t; 
            Range(k,i+1,j+1) = Li; 
 
            Ai = (p-Dpos(:,k))/Li;  % Unit LOS vector to attacker 
            dVel = VelD(:,k) - vel; 
            Vc = Ai'*dVel; % Closing velocity 
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            % Calculate LOS angle 
            temp = atan2(Ai(2),Ai(1)); 
            LOS = (temp-(pi/2-Dpsi(k)))*180/pi; 
            while (abs(LOS) > 180) 
                LOS = -1*sign(LOS)*(360 - abs(LOS)); 
            end 
            % Sum weighted LOS vector if within FOV 
            if (abs(LOS) <= Dfov/2) 
                if (Li < 150) 
                    % Attacker within FOV and attacking range of  

  % defender, increase counter (one time step) 
                    NeutAtt(j,k) = NeutAtt(j,k) + 1; 
                    % If attacker stays within attacking range for X  

  % secs attacker considered neutralized 
                    if (NeutAtt(j,k)*dt > 3) 
                        NeutAtt(j,DefenderTotal+1) = i; 
                        continue; 
                    end 
                else 
                    NeutAtt(j,k) = 0; % Reset neutralize counter if  

attacker goes out of range 
                end 
                Di(:,k) = Di(:,k) + (Vc/Li)*Ai; 
                DEN(k) = DEN(k) + (Vc/Li); 
            end 
        end 
    end 
 
    % If all attackers neutralized, end simulation 
    if ((prod(NeutAtt(:,DefenderTotal+1)) ~= 0) && (SimEnd == 0)) 
        SimEnd = i; 
    end 
 
    % Guidance algorithm     
    for k = 1:DefenderTotal 
        Defender(i+1, 1) = t; 
        Defender(i+1, (2*k):(2*k+1)) = Dpos(:,k)'; 
        if (abs(DEN(k)) < 1e-15) 
            continue; 
        else % Attacker(s) in FOV 
            Di(:,k) = Di(:,k)/DEN(k); 
            Di(:,k) = Di(:,k)/norm(Di(:,k)); 
        end 
        turn = pi/2-atan2(Di(2,k), Di(1,k)) - Dpsi(k); 
        if (abs(turn) > MaxOmega*dt) 
            turn = sign(turn)*MaxOmega*dt; 
            Dpsi(k) = Dpsi(k) + turn; 
            Di(:,k) = [sin(Dpsi(k));cos(Dpsi(k))]; 
        else 
            Dpsi(k) = pi/2-atan2(Di(2,k), Di(1,k)); 
        end 
        Dpos(:,k) = Dpos(:,k) + Dv*Di(:,k)*dt; 
 
        HeadingLog(i+1,1) = t; 
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        HeadingLog(i+1, k+1) = pi/2-Dpsi(k); 
    end 
 
    v_max = max(v,v_max); 
    v_min = min(v,v_max); 
 
    p_swarm(i+1,:) = [t pcombined]; 
    v_swarm(i+1,:) = [t vcombined]; 
    psi_dot(i+1,:) = [t psidotcombined]; 
 
    p_test(i+1,:) = p'; 
    % Update centroid of position of attackers 
    APos = zeros(2,DefenderTotal); 
    for j=1:DefenderTotal 
        for k = Assign(j,1):Assign(j,2) 
            APos(:,j) = APos(:,j) + pcombined(1,2*k-1:2*k)'; 
        end 
        APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1); 
    end 
end 
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C. PERFORMANCE RELATED FUNCTIONS 

%----------------------------------------------------------------------
% File: Probability_Function.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - Calculate the probability function trajectories x_a,x_d, x_0.  
% - Returns a cell array for q which holds the probabilities q{l} for  
% - each attacker's survival over time. Returns an array p, which hold  
% - the probability at each time point for HVU survival. Note that the  
% - final objective function is 1-p. 
% Inputs:  
% Outputs:  
%----------------------------------------------------------------------  
function [p, q] = Probability_Function(x_a, x_d, x_0) 
  
global CONSTANTS OFFLINE_TRAJECTORIES ... 
       PDF_VALUES MESHED_PDF_VALUES... 
       DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ... 
       DIFFERENTIATION_MATRICES ... 
       INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS; 
 
N = CONSTANTS.N; 
 
q = cell(1,CONSTANTS.ATTACKERS.Na); 
for l = 1:CONSTANTS.ATTACKERS.Na 
    q{l} = zeros(N, 1); 
    z = zeros(N, 1); 
    for i = 1:N 
        z(i) = 0; 
        attacker_positions = cell(1,CONSTANTS.ATTACKERS.Na); 
        for s = 1:CONSTANTS.ATTACKERS.Na 
            attacker_positions{1,s} = x_a{s}(i, 1:2); 
            %all attacker positions influence the defender hit rate 
        end 
        point_to_evaluate = x_a{l}(i, 1:2); 
        for k = 1:CONSTANTS.Ns 
            defender_position = x_d{k}(i,1:2); 
            z(i) = z(i)+... 

feval(str2func(CONSTANTS.DEFENDER_HIT_RATE_FUNCTION), 
k,... 
point_to_evaluate,... 
defender_position,... 
defender_heading,... 
attacker_positions,... 
CONSTANTS.ATTACKERS.Na); 

        end 
    end 
    for i = 1:N 
        % This line of code assumes that the integration weights 
        % still converge over the partial interval. This still 
        % needs to be confirmed, but it's definitely true for  
        % Euler's method. 
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        q{l}(i) = exp(-INTEGRATION_WEIGHTS{1}(1:i)'*z(1:i)); 
    end 
end 
p = zeros(N, 1); 
z = zeros(N, 1); 
for i=1:(N-1) 
    for l = 1:CONSTANTS.ATTACKERS.Na 
        point_to_evaluate = x_0(i,1:2); 
        attacker_position = x_a{l}(i, 1:2); 
        %only the position of the particular attacker influences the 
        %attacker hit rate 
        z(i) = z(i)+... 
               q{l}(i)*... 
               feval(str2func(CONSTANTS.ATTACKER_HIT_RATE_FUNCTION),... 
                               l,... 
                               point_to_evaluate,... 
                               attacker_position); 
    end 
end 
for i = 1:N 
    % This line of code assumes that the integration weights 
    % still converge over the partial interval. This still 
    % needs to be confirmed, but it's definitely true for  
    % Euler's method.  
    p(i) = exp(-INTEGRATION_WEIGHTS{1}(1:i)'*z(1:i,1)); 
end 
%---------------------------------------------------------------------  
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%----------------------------------------------------------------------
% File: RunDingsSimulation.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - Runs Ding's simulation using set Heuristic, NumberofDefenders, and 
% - Number of attackers. p0, the array of starting positions of the 
% - attackers, is also assumed to be passed to this file as a global  
% - variable (it's been set to global so that Kaminer code can be run  
% - without editing). Returns cell arrays x_a and x_d, and matrix x_0,  
% - reformatted to be in the form used in the optimal control set up. 
% - Note: Trajectories still need to be interpolated to match up time 
% - points. 
% Inputs: Heuristic function, number of attackers, number of defenders 
% Outputs: x_a, x_d, x_0 
%----------------------------------------------------------------------  
function [x_a, x_d, x_0] =  

RunDingsSimulation(Heuristic,NumberofDefenders,... 
                                               NumberofAttackers) 
 
global N DefenderTotal BadGuyTotal p0 
global p_swarm Defender p_ship Dindex tf 
 
DefenderTotal = NumberofDefenders;  % Total number of defenders 
BadGuyTotal = NumberofAttackers;    % Total number of attackers 
 
RunMoreThanOneBadGuy 
% runs some of the Kaminer code with whatever value p0 is set to.   
% Note that this version of the Kaminer code has a preset HVU  
% trajectory baked into it. 
 
feval(str2func(Heuristic)); 
% runs whichever algorithm is set as Heuristic. This is also necessary  
% for running the rest of the Kaminer code. 
% Trajectories are then put in the format being used in the control 
% implementation 
 
x_a=cell(1,NumberofAttackers); %cell array of attacker trajectories 
for j = 1:NumberofAttackers 
    x_a{1,j}=zeros(N, 3); 
    x_a{1,j}(:,3)=p_swarm(1:N,1); %moves time to the third column 
    x_a{1,j}(:,1)=p_swarm(1:N,2*j);  
    x_a{1,j}(:,2)=p_swarm(1:N, 2*j+1);  
end 
 
x_d=cell(1,NumberofDefenders); %cell array of defender trajectories 
for j = 1:NumberofDefenders 
    x_d{1,j}=zeros(N, 3); 
    x_d{1,j}(:,3)=Defender(1:N,1); %moves time to the third column 
    x_d{1,j}(:,1)=Defender(1:N,2*j);  
    x_d{1,j}(:,2)=Defender(1:N,2*j+1);  
    x_d{1,j}(:,4)=HeadingLog(1:N,j+1); %puts heading in the fourth 
column 
 
end 
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x_0=zeros(N, 3); %HVU trajectory 
 
x_0(:,3)=p_ship(1:N,1); %moves time to the third column 
x_0(:,1)=p_ship(1:N,2); 
x_0(:,2)=p_ship(1:N,3); 
 
 
%----------------------------------------------------------------------
% File: Calibrate_Hit_Rate_Functions.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - Calibrates hit rate functions to desired shape 
% Inputs: None 
% Outputs: None 
%----------------------------------------------------------------------  
global CONSTANTS 
  
%-----------Hit Rate Constants---------% 
  
for i=1:CONSTANTS.Ns 
    CONSTANTS.DEFENDER_HIT_RATE{i}.alpha_theta = 3; 
    CONSTANTS.DEFENDER_HIT_RATE{i}.beta_theta = 3; 
 %parameters for distribution used for angle effectiveness 
    CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r = 6; 
    CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r = 0.7; 
 %parameters for distribution for radial distance effectiveness 
    CONSTANTS.DEFENDER_HIT_RATE{i}.max_angle =  pi/3; 
 %FOV extends plus or minus this angle from heading 
    CONSTANTS.DEFENDER_HIT_RATE{i}.rho = 1200; 

%radius within which attackers divide defender attention/rate 
    CONSTANTS.DEFENDER_HIT_RATE{i}.sigma = .01;  

%tiny number for standard deviation of normal cdf that smooth rho 
    x_star = exp(CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r –  

(CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r)^2);  
    CONSTANTS.DEFENDER_HIT_RATE{i}.normalizing_constant_r =  

1/lognpdf(x_star, ... 
CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r,... 
CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r); 

end 
  
for i=1:CONSTANTS.ATTACKERS.Na 
    CONSTANTS.ATTACKER_HIT_RATE{i}.alpha = 3; 
    CONSTANTS.ATTACKER_HIT_RATE{i}.beta = 18; 
    CONSTANTS.ATTACKER_HIT_RATE{i}.c1 = 1; 
    %changes magnitude of rate function 
    CONSTANTS.ATTACKER_HIT_RATE{i}.c2 =  1/800;  
    %inversely changes radius of rate function 
end 
  
CONSTANTS.DEFENDER_HIT_RATE_FUNCTION =  

'FOV_Defender_Hit_Rate_logn_withdivider'; 
CONSTANTS.ATTACKER_HIT_RATE_FUNCTION = 'Full_Beta_Attacker_Hit_Rate'; 
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%----------------------------------------------------------------------
% File: Interpret_Results.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% Inputs: None 
% Outputs: None 
%----------------------------------------------------------------------  
N_guess=500; 
NumberofDefenders=5; 
NumberofAttackers=40; 
 
[x_a, x_d, x_0, N_real]=RunDingsSimulation(N_guess,... 
                                           NumberofDefenders,... 
                                           NumberofAttackers) 
 
colors = ['g';'r';'k';'c';'m']; 
plotters = ['xg';'xr';'xk';'xc';'xm']; 
figure; hold on 
for j = 1:NumberofAttackers 
    plot(x_a{j}(:,1),x_a{j}(:,2)); 
end 
plot(x_0(:,1),x_0(:,2),'m', 'LineWidth', 3,'DisplayName', 'HVU'); 
for k = 1:NumberofDefenders 
    plot(x_d{k}(:,1),x_d{k}(:,2), colors(k), 'LineWidth', 
3,'DisplayName', ['Defender ' int2str(k)]); 
end 
hold off                                          
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%----------------------------------------------------------------------
% File: Plot_Hit_Rates.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Plot hit rate functions 
% Inputs: None 
% Outputs: None 
%----------------------------------------------------------------------  
global CONSTANTS 
 
time_index = 10; 
 
x_a = x_a_i; 
x_d = x_d_a_i; 
x_0 = x_0_a_i; 
 
figure 
colormap('jet'); 
hold on 
axis([-5,8000,0,3200,0,1]) 
view([-6 51]) 
grid on; 
 
spatial_incr = 35; %fineness of spatial mesh 
 
[X,Y] = meshgrid(-5:spatial_incr:8000,0:spatial_incr:3200);  
[i_length, j_length]=size(X); 
 
for s = 1:NumberofAttackers 
    Z = 0*X; 
    for i = 1:i_length 
        for j = 1:j_length 
            point_to_evaluate = [X(i,j),Y(i,j)]; 
            attacker_position = x_a{s}(time_index, 1:2); 
            Z(i,j) =  

feval(str2func(CONSTANTS.ATTACKER_HIT_RATE_FUNCTION), 
                                    s,... 
                                    point_to_evaluate,... 
                                    attacker_position); 
        end 
    end 
    mesh(X,Y,Z); 
end 
 
for s = 1:NumberofDefenders 
    Z = 0*X; 
    for i = 1:i_length 
        for j = 1:j_length 
            point_to_evaluate = [X(i,j),Y(i,j)]; 
            defender_position = x_d{s}(time_index, 1:2); 
            defender_heading = x_d{s}(time_index,4); 
            attacker_positions = cell(1,CONSTANTS.ATTACKERS.Na); 
            for a = 1:CONSTANTS.ATTACKERS.Na 
                attacker_positions{a} = x_a{a}(time_index, 1:2); 
            end 
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            Z(i,j) =  
feval(str2func(CONSTANTS.DEFENDER_HIT_RATE_FUNCTION), 

                               s,.... 
                               point_to_evaluate,... 
                               defender_position,... 
                               defender_heading,... 
                               attacker_positions,... 
                               CONSTANTS.ATTACKERS.Na); 
        end 
    end 
    mesh(X,Y,Z); 
end 
 
%---------------------------------------------------------------------     
for s = 1:NumberofAttackers 
        cline2D(x_a_i{s}(:,1),x_a_i{s}(:,2),q{s}(:),'Cool'); 
end 
cline2D(x_0_a_i(:,1),x_0_a_i(:,2),p(:),'Autumn'); 
 
colormap('jet'); 
for s = 1:NumberofDefenders 
    plot(x_d_a_i{s}(:,1), x_d_a_i{s}(:,2),'g', 'LineWidth',3); 
end 
%--------------------------------------------------------------------- 
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%----------------------------------------------------------------------
% File: Result_Plots.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Plot all trajectories 
% Inputs: None 
% Outputs: None 
%----------------------------------------------------------------------  
 
global CONSTANTS OFFLINE_TRAJECTORIES ... 
       PDF_VALUES MESHED_PDF_VALUES... 
       DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ... 
       DIFFERENTIATION_MATRICES ... 
       INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS; 
  
NumberofAttackers = CONSTANTS.ATTACKERS.Na; 
NumberofDefenders = CONSTANTS.Ns; 
 
%---------------------------------------------------------------------                                          
% Plot a_i trajectories 
%--------------------------------------------------------------------- 
figure 
view(2) 
hold on 
    for s = 1:NumberofAttackers 
        cline2D(x_a_i{s}(:,1),x_a_i{s}(:,2),q{s}(:),'Cool'); 
    end 
for s = 1:NumberofDefenders 
    plot(x_d_a_i{s}(:,1), x_d_a_i{s}(:,2),'g'); 
end 
cline2D(x_0_a_i(:,1),x_0_a_i(:,2),p(:),'Autumn'); 
%--------------------------------------------------------------------- 
figure 
hold on 
plot(x_0_a_i(:,3), p(:),'b') 
for s = 1:NumberofAttackers 
    plot(x_a_i{s}(:,3),q{s}(:),'r'); 
end 
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%----------------------------------------------------------------------
% File: cline2D.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - This function plots a 3D line (x,y,z) encoded with scalar color  
% - data (c) using the specified colormap (default=jet); 
% - SYNTAX: h=cline2D(x,y,z,c,colormap); 
% - DBE 09/03/02 
% Inputs:  
% Outputs:  
%----------------------------------------------------------------------  
% Edited by CLW, 2012, to make 2D, and to make spline work when entries  
% are identical 
function h=cline2D(x,y,c,cmap); 
 
if nargin==0  % Generate sample data... 
  x=linspace(-10,10,101); 
  y=2*x.^2+3; 
  z=sin(0.1*pi*x); 
  c=exp(z); 
  w=z-min(z)+1; 
  cmap='jet'; 
elseif nargin<3 
  fprintf('Insufficient input arguments\n'); 
  return; 
elseif nargin==3 
  cmap='jet'; 
end 
 
cmap=colormap(cmap);% Set colormap 
 
% Generate range of color indices that map to cmap 
yy=linspace(0,1,size(cmap,1)); 
cm = spline(yy,cmap',c);% Find interpolated colorvalue 
cm(cm>1)=1; 
cm(cm<0)=0; 
 
% Lot line segment with appropriate color for each data pair... 
for i=1:length(x)-1 

h(i)=line([x(i) x(i+1)],[y(i) y(i+1)], 
'color',[cm(:,i)],'LineWidth',2); 

end 
 
return 
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%----------------------------------------------------------------------
% File: Full_Beta_Attacker_Hit_Rate.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Defines full beta attacker hit rate function 
% Inputs: attacker_index, point_to_evaluate, attacker_position 
% Outputs: rate 
%----------------------------------------------------------------------  
function rate =  Full_Beta_Attacker_Hit_Rate(attacker_index,... 
                                             point_to_evaluate,... 
                                             attacker_position) 
 
global CONSTANTS  
 
alpha = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.alpha; 
beta = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.beta; 
c1 = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.c1; 
c2 = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.c2; 
 
x_star = (alpha-1)/(alpha+beta-2); %point of function maximization 
normalizing_constant = 1/betapdf(x_star, alpha, beta); 
distance = c2*norm(attacker_position-point_to_evaluate); 
  
if distance < 1 
    rate = c1*normalizing_constant*betapdf(distance, alpha, beta); 
else 
    rate = 0; 
end 
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%----------------------------------------------------------------------
% File: FOV_Defender_Hit_Rate_logn_withdivider 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Defines defender hit rate function 
% Inputs: defender_index, point_to_evaluate, defender_position,  
%   defender_heading, attacker_positions, NumberofAttackers 
% Outputs: rate 
%----------------------------------------------------------------------  
function rate =  FOV_Defender_Hit_Rate_logn_withdivider  

 (defender_index,... 
                                            point_to_evaluate,... 
                                            defender_position,... 
                                            defender_heading,... 
                                            attacker_positions,... 
                                            NumberofAttackers) 
 
global CONSTANTS  
 
alpha_theta = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.alpha_theta; 
beta_theta = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.beta_theta; 
mu_r = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.mu_r; 
sigma_r = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.sigma_r; 
max_angle = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.max_angle; 
normalizing_constant_r = 
CONSTANTS.DEFENDER_HIT_RATE{defender_index}.normalizing_constant_r; 
rho = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.rho; 
sigma = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.sigma; 
 
Attention_Dividing_Sum = 1; 
%We want the hit rate to stay constant for one attacker, but decrease 
%proportionate to additional nearby attackers. This can be accomplished  
%by the following shenanigans: If there is just one attacker the  
%attention dividing sum is one. if more attackers, the nearest attacker  
%is automatically counted as the 1. then each additional attacker is  
%added on. 
 
if NumberofAttackers>1 
    %first need to figure out which attacker is nearest. 
    distance = norm(attacker_positions{1,1}(:)-defender_position(:)); 
    index_of_min=1; 
    for i=2:NumberofAttackers 
        if norm(attacker_positions{1,i}(:)- 

defender_position(:))<distance; 
            distance = norm(attacker_positions{1,i}(:)- 

defender_position(:)); 
            index_of_min = i; 
        end 
    end 
    for i=1:NumberofAttackers 
        if i~=index_of_min 
            distance = norm(attacker_positions{1,i}(:)- 

defender_position(:)); 
            Attention_Dividing_Sum = Attention_Dividing_Sum +  

normcdf(rho-distance, 0, sigma); 
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        end 
    end 
end 
 
distance = norm(point_to_evaluate-defender_position); 
 
f_r = normalizing_constant_r*lognpdf(distance,mu_r, sigma_r); 
 
angle_of_point = atan2(point_to_evaluate(2)-defender_position(2),... 
              point_to_evaluate(1)-defender_position(1)); 
 
defender_heading = mod(defender_heading,2*pi); %mod so it's easier  
 
% adjust heading to fit into atan2's format for polar coordinates 
if defender_heading>pi 
    defender_heading=defender_heading-2*pi; 
end 
 
%angle_of_point       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% There's a discontinuity at pi/-pi. The following cases deal 
% with that.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if pi-max_angle<=defender_heading && defender_heading<=pi 
    if -pi<=angle_of_point && angle_of_point<=-pi+max_angle 
       angle_of_point = angle_of_point+2*pi; 
    end 
end 
if -pi<=defender_heading && defender_heading<=-pi+max_angle 
  if pi-max_angle<=angle_of_point && angle_of_point<=pi 
    angle_of_point = angle_of_point-2*pi;   
  end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
delta_theta = (abs(defender_heading-
angle_of_point)+max_angle)/(2*max_angle); 
if (delta_theta>0 && delta_theta<1) 
    x_star = (alpha_theta-1)/(alpha_theta+beta_theta-2); %point of 
function maximization 
    normalizing_constant = 1/betapdf(x_star, alpha_theta, beta_theta); 
    f_theta = normalizing_constant*betapdf(delta_theta,alpha_theta, 
beta_theta); 
else 
    f_theta=0; 
end 
 
rate = f_r*f_theta/Attention_Dividing_Sum; 



 69 

%----------------------------------------------------------------------
% File: Calculate_Methods.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - This file is problem independent and should never have to be  
% - edited, except to add more methods. 
% - This function creates differentiation weights and integration  
% - weights for a given method. It also creates the arrays for the  
% - discretized values of the variables. It therefore accesses data 
% - sent from the Problem File, by using the global CONSTANTS. The  
% - weights it creates are problem specific; they do not have to be  
% - renormalized for the variable intervals. 
% Inputs: Discretization, Methods 
% Outputs: None 
%----------------------------------------------------------------------  
% © 2012, CLAIRE WALTON. Some Rights Reserved. 
%====================================================================== 
% Notes 
% 'Discretization' should be an array with the values for how fine  
% the discretization is for time and parameter space.  
% E.g. in this case discretization [5,9,9] would run the simulation for  
% 5 time steps and a 9x9 parameter space. 
% 
% 'Methods' should be an array with the same dimension as 
% Discretization. Each entry is the method used for each discretization  
% variable. 
%           Method 0: Euler 
%           Method 1: Pseudospectral with lgl points 
%====================================================================== 
function Calculate_Methods(Discretization, Methods) 
 
global CONSTANTS OFFLINE_TRAJECTORIES ... 
       JOINT_PDF MESHED_JOINT_PDF... 
       DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ... 
       DIFFERENTIATION_MATRICES ... 
       INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS 
 
%----------------------------------- 
% Compute details for Time Domain 
%----------------------------------- 
 
    %-----------------------------------% 
    % Note                              % 
    %   Currently, the time domain is   % 
    % being calculated with N+1, but    % 
    % parameter space is using N.       % 
    % This was inherited from previous  % 
    % code and will probably be changed.% 
    %-----------------------------------% 
 
if Methods(1)==0 
    disp('--------------------------------------------------------') 
    disp('Methods:'); 
    disp('Time: Euler'); 
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    [Dn, Time_Array, Weights]=euldiff(Discretization(1)); 
end 
 
if Methods(1)==1 
    disp('--------------------------------------------------------') 
    disp('Methods:'); 
    disp('Time: Pseudospectral with Legendre Points'); 
    [Dn, Time_Array, Weights]=legdiff(Discretization(1)); 
% Get differentiation matrix, legendre points, and quadrature weights 
end 
    %-----------Transformation----------% 
    % Have to transform these from the  %  
    % interval [-1,1] to [T0,TF]. Equiv % 
    % to u = (1/2)(TF-T0)t+(1/2)(TF+TO) % 
    %-----------------------------------% 
T0=CONSTANTS.Time.T0; 
TF=CONSTANTS.Time.TF; 
DISCRETIZATION_VALUES{1} = .5*(TF+T0)+.5*(TF-T0).*Time_Array; 
    % cell array, DISCRETIZATION_VALUES{1} is the array of time points 
DIFFERENTIATION_MATRICES{1} = (2/(TF-T0)).*Dn; 
    % cell array, first element is Dn for time. 
INTEGRATION_WEIGHTS{1} = .5*(TF-T0).*Weights; 
    % cell array, first element is integration weights for time 
 
%----------------------------------- 
% Compute details for Parameter Space 
%----------------------------------- 
Size=CONSTANTS.ParameterSpace.Dimension+1; 
    % i.e. length (Discretization) 
for i=2:Size 
 
    if Methods(i)==0 
        str=['Parameter ',num2str(i-1), ': Euler']; 
        disp(str); 
        [Dn, Parameter_Array, Weights]=euldiff(Discretization(i)); 
    end    
 
    if Methods(i)==1 
        str=['Parameter ',num2str(i-1), 

': Pseudospectral with Legendre Points']; 
        disp(str); 
        [Dn, Parameter_Array, Weights]=legdiff(Discretization(i)); 
% Get differentiation matrix, legendre points, and quadrature weights 
    end 
 
    W0=CONSTANTS.ParameterSpace.W0(i-1); 
    WF=CONSTANTS.ParameterSpace.WF(i-1); 
    DISCRETIZATION_VALUES{i} = .5*(WF+W0)+.5*(WF-W0).*Parameter_Array; 
% cell array, DISCRETIZATION_VALUES{1} is the array of time points 
 
    DIFFERENTIATION_MATRICES{i} = (2/(WF-W0)).*Dn; 
        % cell array, first element is Dn for time. 
 
    INTEGRATION_WEIGHTS{i} = .5*(WF-W0).*Weights; 
        % cell array, first element is integration weights for time 
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end 
disp('--------------------------------------------------------')  
 
%%%%%Create meshed values for multiple attackers%%%% 
 
% there is no mesh for the time domain, but it's nice to keep the  
% dimension numbers matching the unmeshed values 
MESHED_DISCRETIZATION_VALUES{1}=[]; 
MESHED_INTEGRATION_WEIGHTS{1}=[]; 
 
% This creates the meshes for evaluating every permutation of  
% discretization values. The objective function still needs to have a  
% nested for loop iterating through the two meshes. Each i-th column 
% of the cell is the value for the i-th attacker. Each row is a unique 
% permutation of Na values. Equivalent meshes are created for the  
% integration weights to keep track of which weights need to be used  
% for each permutation. To integrate, take the product over all Na  
% columns.  
 
for i=2:Size 
% first cell arrays are used to trick ndgrid into outputting the right 
% dimension grid 
    discretization_values=cell(1,CONSTANTS.ATTACKERS.Na); 
 
    integration_weights=cell(1,CONSTANTS.ATTACKERS.Na); 
 
    if CONSTANTS.ATTACKERS.Na>1 
        [discretization_values{1,:}] =  

ndgrid(DISCRETIZATION_VALUES{i}); 
        [integration_weights{1,:}] = ndgrid(INTEGRATION_WEIGHTS{i}); 
    else 
        discretization_values{1,:} = DISCRETIZATION_VALUES{i}; 
        integration_weights{1,:} = INTEGRATION_WEIGHTS{i}; 
    end 
% then everything is reshaped to reduce notational confusion. While 
% the meshgrid outputs Na Na-dimensional arrays, these can be indexed 
% through and reread as Na one-dimensional vectors. This creates a  
% matrix with the dimensions (parameter_length^Na, Na) 
    MESHED_DISCRETIZATION_VALUES{i} =  

zeros(length(discretization_values{1,1}(:)), ... 
                                            CONSTANTS.ATTACKERS.Na); 
    MESHED_INTEGRATION_WEIGHTS{i} =  

zeros(length(discretization_values{1,1}(:)), ... 
                                            CONSTANTS.ATTACKERS.Na); 
   for s=1:CONSTANTS.ATTACKERS.Na 
       MESHED_DISCRETIZATION_VALUES{i}(:,s) =  

discretization_values{1,s}(:); 
       MESHED_INTEGRATION_WEIGHTS{i}(:,s) =  

integration_weights{1,s}(:); 
   end 
end 
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%----------------------------------------------------------------------
% File: euldiff.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - This function calculates the differentiation matrix Dn that is  
% - obtained by using forward Euler's method on n equally spaced  
% - points. These values are calculated over the interval [-1,1] and  
% - need to be transformed to the interval of the problem. Note that  
% - this does not return a square matrix. It returns a (N-1)xN matrix 
% Inputs: N 
% Outputs: Dn, x, w 
%----------------------------------------------------------------------  
% © 2012, CLAIRE WALTON. Some Rights Reserved. 
%====================================================================== 
function [Dn,x,w]=euldiff(N); 
h=2/(N-1); 
x = (-1:h:1)'; 
w = ones(N,1).*h; 
w(N,1)=0; 
v1=ones(1,N-1); 
v2=-1*ones(1, N); 
temp=(diag(v1,1)+diag(v2))./h; 
Dn = temp(1:N-1,:); 
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%----------------------------------------------------------------------
% File: legdiff.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - This function calculates the differentiation matrix Dn that is 
% - obtained by differentiating the Lagrange Polynomials at the  
% - Legendre-Gauss-Lobatto (LGL) points. It's  zero on the main  
% - diagonal except at l=k=1, where Dn(1,1)= n(n+1)/4; and at l=k=n;  
% - where Dn(n,n)=-n(n+1)/4. n= no of LGL points. For the other LGL  
% - points l (~=)k, we have Dn(l,k)= Ln(xl)/Ln(xk)*(1/xl-xk). 
% - This routine is part of DIDO Version 0.1 
% - Written by Fariba Fahroo, edited by I. Michael Ross 
% - Major subfunctions written by W. Gragg 
% - Naval Postgraduate School, Monterey, CA 93943 
% Inputs: n 
% Outputs: Dn, x, w 
%----------------------------------------------------------------------  
function [Dn,x,w]=legdiff(n); 
 
[x w]=lobatto(n); 
x=sort(x); 
% initialize Dn 
Dn=zeros(n); 
Dn(1,1)=-(n-1)*n/4; 
Dn(n,n)=n*(n-1)/4; 
 
% Calculate the legendre polynomials at xi. 
p=0*eye(n); 
for i=1:n; s=x(i); p(i,1)=1; p(i,2)=s; 
for j=2:n-1; p(i,j+1)=((2*j-1)*s*p(i,j)-(j-1)*p(i,j-1))/j; end; end; 
 
% Fill out the rest of matrix Dn. 
for l=1:n; for k=1:n;  
if l~=k, 
Dn(l,k)=p(l,n)/(p(k,n)*(x(l)-x(k))); 
end;  
end;end; 
 
%==================================== 
function [x,w] = lobatto(n,a,b) 
 
% [x w] = lobatto(n) or [x w] = lobatto(n,alpha,beta): 
% 
% Computes abscissa and weights for the n-point Gauss-Jacobi-Lobatto 
% quadrature formula using the method of Gene H. Golub, Some modified 
% matrix eigenvalue problems, SIAM Rev. 15 (1973) 318-334.  Another  
% early algorithm for this is by David Galant, An implementation of  
% Christoffel's formula in the theory of orthogonal polynomials, Math.  
% Comp. 25 (1971) 111-113.  All such algorithms should be "reviewed",  
% in light of recent improvements in tqr and Cholesky LR algorithms.   
% But, this algorithm "ain't bad". 
% Copyright (c) 23 August 1997 by Bill Gragg.  All rights reserved. 
  
% lobatto calls mxt, mxtj and tqr. 
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% begin lobatto 
 
if nargin < 2 

a = 0;   b = 0; 
end 
 
m = 2^(a + b + 1)*beta(a+1,b+1); 
us = a == b; 
 
n = n - 1;  [a b] = mxtj(n,a,b); T = mxt(a,b); 
I = eye(n);  e = zeros(n,1);  e(n) = 1; 
c = (T + I)\e; c = c(n);   d = (T - I)\e; 
d = d(n);  e = c - d;   c = (c + d)/e; 
d = sqrt(2/e); a(n+1) = c;   b(n) = d; 
[x u] = tqr(a,b); u = u';   w = m*u.^2; 
 
% "Purify" formulas in the ultraspherical case. 
 
if us 

x = (x - flipud(x))/2;   w = (w + flipud(w))/2; 
end 
        
% end lobatto 
%----------------------------------------------------------------- 
function T = mxt(a,b,c) 
% T = mxt(a,b,c) or T = mxt(a,b): 
% 
% T = mxt(a,b,c) is the TRIDIAGONAL MATRIX with diagonal elements  
% a(1:n), subdiagonal elements b(1:n-1) and superdiagonal elements  
% c(1:n-1). 
% T = mxt(a,b) is the HERMITIAN tridiagonal matrix with diagonal  
% elements real(a(1:n)) and subdiagonal elements b(1:n-1). 
% Copyright (c) 1 December 1990 by Bill Gragg.  All rights reserved. 
% Revised 21 November 1992. 
 
% mxt calls no extrinsic functions. 
 
% begin mxt 
if nargin < 3 

a = real(a); c = b'; 
end 
 
n = length(a); b = b(1:n-1); 
c = c(1:n-1); z = zeros(n-1,1); 
 
if n < 500 

B = diag(b); B = [z' 0; B z]; 
C = diag(c); C = [z C; 0 z']; 
T = diag(a); T = T + B + C; 

else 
T = zeros(n); 

 
 

for k = 1:n-1 
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T(k,k) = a(k);   T(k+1,k) = b(k);   T(k,k+1) = c(k); 
end 

 
T(n,n) = a(n); 

 
end 
% end mxt 
 
%----------------------------------------------------------------------  
function [a,b] = mxtj(n,alpha,beta) 
 
% [a b] = mxtj(n,alpha,beta), [a b] = mxtj(n,alpha), [a b] = mxtj(n), 
%     T = mxtj(n,alpha,beta),     T = mxtj(n,alpha) or   T = mxtj(n): 
% 
% mxtj(n,alpha,beta):  T = mxt(a,b) is the Jacobi matrix whose  
% characteristic polynomial p is (a nonzero scalar multiple of) the nth  
% JACOBI polynomial. 
% The eigenvalues of T are the abscissas of the nth order Gauss- 
% Christoffel quadrature formula for the weight function ((1 –  
% t)^alpha)((1 + t)^beta) on the interval - 1 < t < 1.  The Gauss- 
% Christoffel weights are m(0) times the squares of the first elements  
% of the normalized eigenvectors of T, where m(0) = b(0)^2 = B(alpha +  
% 1,beta + 1)2^(alpha + beta - 1) is the total mass. 
% B is the beta function.  The weight function is positive and  
% integrable if alpha + 1 > 0 and beta + 1 > 0. 
% 
% mxtj(n,alpha) takes beta = alpha.  p is the nth ULTRASPHERICAL  
% polynomial, with weight function (1 - t^2)^alpha on the interval 
% 1 < t < 1.  Special cases are the CHEBYSHEV polynomial of the FIRST  
% KIND, with alpha = - 1/2, and of the SECOND KIND, with alpha = 1/2. 
% 
% mxtj(n) takes alpha = beta = 0.  p is the nth LEGENDRE polynomial,  
% with weight function w(t) = 1 on the interval - 1 < t < 1.  The  
% quadrature formula here is originally due to Gauss.  Christoffel  
% generalized Gauss' formula to a wide class of weight functions.   
% Because of this the Gauss-Christoffel weights are usually called  
% Christoffel numbers. 
 
% Copyright (c) 2 February 1991 by Bill Gragg.  All rights reserved. 
 
% mxtj calls mxt. 
 
% begin mxtj 
if nargin < 2 

alpha = 0; 
end; 
if nargin < 3 

beta = alpha; 
end 
 
a = alpha;   b = beta;   c = a + b;   d = b - a; 
s(1) = d/(c + 2);   t(1) = (a + 1)*(b + 1)/(c + 2)^2/(c + 3); 
 
if n > 2 

d = c*d; 
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n = (2:n)';   m = 2*n;   mm = m - 1;   mp = m + 1; 
s(n) = d./(c + m)./(c + (m - 2)); 
t(n) = n.*(a + n).*(b + n).*(c + n)./(c + mm)./ 

((c + m).^2)./(c + mp); 
end 
a = s(:);   b = 2*sqrt(t(:)); 
if nargout < 2 

a = mxt(a,b); 
end 
% end mxtj 
 
% Problems. 
% 1. Relate T = mxt(a,b), with [a b] = mxtj(n,1/2), with the negative  
%    second difference matrix S = mxt(c,d), with [c d] = mxs(n). 
%---------------------------------------------------------------------- 
function [lam,U] = tqr(a,b,U) 
%     [lam u] = tqr(a,b) or [lam U] = tqr(a,b,U): 
% 
%     [lam u] = tqr(a,b): 
% 
% The column lam contains the eigenvalues of the Hermitian tridiagonal 
% matrix T = mxt(a,b) computed by one version of the (real symmetric)  
% tqr algorithm with Wilkinson's shift.  The column u contains the  
% first elements of the eigenvectors of T normalized to be nonnegative  
% and such that the eigenvectors are unit vectors.  In practice this is  
% an O(n^2) process.  If u is omitted only the eigenvalues are  
% computed. The computed eigenvalues are real and are sorted to be  
% nonincreasing. 
% 
%     [lam U] = tqr(a,b,U): 
% 
% This replaces the input U by UV with V a matrix of orthonormal eigen- 
% vectors of T.  If the input U is I the output U is V.  If the input U  
% is unitary with AU = UT then the output U is unitary with AU = UD and  
% D = diag(lam). 
% 
% If the input U is e(1)' the output U is u'.  If the input U is 
% [e(1)'; e(n)'] the output U is [u'; v'] with v the column of last 
% elements of the normalized eigenvectors. If the subdiagonal elements  
% of T are all nonzero then the elements of v alternate in sign, at  
% least mathematically. 
 
% Copyright (c) 2 February 1991 by Bill Gragg.  All rights reserved. 
% Revised 15 July 1994. 
 
% tqr calls sgn. 
% begin tqr 
 
% Ensure that T is Hermitian and shift b down one unit. 
a = real(a);   n = length(a);   b = [0; b(:)];   b = b(1:n); 
 
% Initialize U if required and execute a diagonal unitary similarity 
% transformation to make T have nonnegative subdiagonal elements. 
 
if nargout > 1 



 77 

 
if nargin < 3 

U = zeros(1,n);   U(1) = 1;    
end 

 
u = sgn(b);   u = cumprod(u);   U = U*diag(u); 

end 
 
b = abs(b); 
 
% Scale the matrix up by a power of two to give nearly the widest 
% possible exponent range. 
 
scale = norm([a; b*sqrt(2)]); 
scale = 2^(1024 - ceil(log2(scale))); 
a = a*scale; 
b = b*scale; 
 
format compact                  % Temporary statements 
maxscale = max(abs([a; b]));    % for display. 
 
% "Do tqr". 
for m = n:-1:1 
 
% Compute the mth eigenvalue. 

for its = 0:10*n     % its is the iteration index. 
 
% Split the matrix if possible.  This is also the termination test. 

for k = m:-1:1 
 

if k > 1 
tol = abs(a(k-1)) + abs(a(k)); 

 
if tol + b(k) == tol 

b(k) = 0;  break 
end 

end 
end 

 
if k == m 

break     % b(m) = 0.  a(m) is an eigenvalue. 
else 

 
if its == 10*n  
    error('tqr iteration did not terminate in 10n steps!') 
end 

 
% Compute Wilkinson's shift w as a perturbation of the 
% Rayleigh shift r = a(m).  As the algorithm converges 
% c = b(m) --> 0. 
r = a(m);   c = b(m);   d = (r - a(m-1))/2;   s = abs(d); 
 
if c < s 

s = c/s;   t = 1 + sqrt(1 + s*s);   t = c*s/t;   % t < c; 
else 
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s = s/c;   t = s + sqrt(1 + s*s);   t = c/t;     % t < c; 
end 
 
if d > 0 

w = r + t; 
else 

w = r - t; 
end 
 
% Take a step of the tqr algorithm.  There are many ways to 
% implement the inner loop.  We recently found the fastest 
% known stable form in terms of flops.  The form given here 
% is elegant. 
 
c = 1;   s = 0;   p = w - a(k);   t = p; 
 
for j = k:m-1 

% Compute the two by two reflector stably and update b(j). 
oldc = c;   oldt = t;   q = b(j+1);   u = abs(p); 

 
if q < u 

v = q/u;      r = sqrt(1 + v*v);   b(j) = u*r*s; 
u = sgn(p);   c = u/r;             s = v/r;      

else 
v = p/q;      r = sqrt(1 + v*v);   b(j) = q*r*s; 
u = 1;        c = v/r;             s = u/r; 

end 
 

% Update p, t, a(j), and U(:,j:j+1) if required. 
p = c*(w - a(j+1)) - s*q*oldc;   t = c*p; 
a(j) = a(j+1) + t - oldt; 

 
if nargout > 1 

i = j:j+1;   U(:,i) = U(:,i)*[-c s; s c]; 
end 

end 
 
% Update b(m), a(m), and U(:,m) if required. 
b(m) = abs(p)*s;   a(m) = w - t;   c = sgn(p); 
 
if nargout > 1 

U(:,m) = - U(:,m)*c; 
end 
 
end 
 
end 
 
end 
 
% Sort and prepare the output. 
[a p] = sort(-a);   lam = - a/scale; 
 
if nargout > 1 

U = U(:,p);   u = U(1,:)'; 
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if nargin < 3 

u = abs(u);   U = u'; 
else 

u = sgn(u);   U = U*diag(u'); 
end 

end 
 
% end tqr 
 
%------------------------------------------------------------------- 
function W = sgn(Z1,Z2) 
% W = sgn(Z) or W = sgn(Z1,Z2): 
% 
% For z a complex number we define sgn z, the SIGNUM of z, as z/|z| if 
% z ~= 0 and + 1 if z = 0.  Thus sgn z is the same as matlab's sign z 
% except when z = 0.  We always have |sgn z| = 1, apart from rounding 
% errors. 
% 
% With the first call W is the Schur (elementwise) sgn function of the 
% complex matrix Z.  With the second call we have W = |Z1|.*sgn(Z2); 
 
% Copyright (c) 19 January 1991 by Bill Gragg.  All rights reserved. 
% Revised 29 May 1996. 
 
% sgn calls no extrinsic functions. 
 
% begin sgn 
if nargin < 2 

W = sign(Z1);   W = W + (W == 0); 
else 

W = sign(Z2);   W = W + (W == 0);   W = abs(Z1).*W; 
end 
 
% end sgn 
 
% Total flops (scalar case, see csgn):  TBC 
 
% Problem. 
% 1. Compare this function experimentally with csgn. Compare with  
% regard to both execution time and numerical stability. Is matlab 
% computing sign correctly? 
%====================================================================== 
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%----------------------------------------------------------------------
% File: Run_Optimization.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - Run_Optimization functions as a module that organizes an snopt call 
% - for both searching and herding problem 
% - Runs on general form agreed on for objective function 
% Inputs: Problem_Info 
% Outputs: x, F, xmul, Fmul, INFO, run_time 
%----------------------------------------------------------------------  
% © 2012, CLAIRE WALTON. Some Rights Reserved. 
%====================================================================== 
% Notes 
% 1. This file should be run after all offline trajectories/pdfs are  
%    built 
% 2. this file will compute sparsity patterns and run snopt 
% 3. it will also split up the results into cost, control, and searcher 
%    trajectories 
% 4. run_time will measure snopt optimization, and will not include  
%    parsing results 
% 
% Claire Walton, 01/19/12 
%====================================================================== 
function [x,F,xmul,Fmul,INFO, run_time] =  

Run_Optimization(Problem_Info) 
 
global CONSTANTS OFFLINE_TRAJECTORIES JOINT_PDF 
DISCRETIZATION_VALUES DIFFERENTIATION_MATRICES INTEGRATION_WEIGHTS 
 
Example1.spc = which('Example1.spc'); 
snspec (Example1.spc ); 
 
[Objective_lower, Objective_upper, Dynamics_lower, Dynamics_upper,.... 
 Variables_lower, Variables_upper] = 
feval(str2func(Problem_Info.Optimization_Bounds)); 
 
xlow = Variables_lower; 
xupp = Variables_upper; 
 
Flow = [Objective_lower; Dynamics_lower]; 
Fupp = [Objective_upper; Dynamics_upper]; 
% F is the vector of functions made by concatenating the objective  
% function and the dynamics constraints; these are its bounds. 
 
nF = length(Flow); 
% dimension of the function vector F 
n = length(xlow); 
% number of state variables 
 
x = feval(str2func(Problem_Info.Initial_Guess)); 
%x = zeros(n,1); %this is for no initial guess  
xstate = zeros(n,1);  
% This is some weird thing that indicates something about values of x. 
% Setting it equal to zero seems to be related to no initial guess 
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ObjAdd = 0;  
% ObjAdd is a constant added to the objective function for printing  
% purposes 
 
ObjRow = 1; 
% ObjAdd is the row in F containing the objective function. We will  
% always use 1. 
 
xmul   =     zeros(n,1); 
% This has something to do with the vector of duals 
 
Fstate =   zeros(nF,1); 
Fmul   =   zeros(nF,1); 
% I don't know what these are 
 
Start = 1; 
% The value of Start has something to do with the meaningfulness  
% of xstate and Fstate. Start = 1 knows they're not meaningful. 
 
% [iGfun,jGvar] = feval(str2func(Problem_Info.Gradient_Sparsity)); 
% [iAfun,jAvar,A] = feval(str2func(Problem_Info.Linear_Gradient)); 
 
disp('--------------------------------------------------------'); 
disp('  ... ... ... ... ... ... ... ... ... ... ... ... ...   '); 
disp(' ... ... ... ... ... running snJac ... ... ... ... ...  '); 
disp('  ... ... ... ... ... ... ... ... ... ... ... ... ...   ');  
 
[A,iAfun,jAvar,iGfun,jGvar] = 
snJac(Problem_Info.UserFun,x,xlow,xupp,nF); 
 
snseti ('Derivative option', 0); 
snseti ('Major Iteration limit', 1000); 
snsetr ('Major feasibility tolerance', 10^(-4)) 
snsetr ('Minor feasibility tolerance', 10^(-5)) 
snsetr ('Major optimality tolerance', 10^(-4)) 
snsetr ('Minor optimality tolerance', 10^(-5)) 
 
run_time = cputime; 
 
disp('--------------------------------------------------------'); 
disp('  ... ... ... ... ... ... ... ... ... ... ... ... ...   '); 
disp(' ... ... ... ... ... running snopt ... ... ... ... ...  '); 
disp('  ... ... ... ... ... ... ... ... ... ... ... ... ...   ');  
 
[x,F,xmul,Fmul,INFO] = snoptcmex(Start, x, xlow, xupp, xmul, xstate,  

Flow, Fupp, Fmul, Fstate, ObjAdd, ObjRow, A,... 
iAfun, jAvar, iGfun, jGvar,... 
Problem_Info.UserFun); 

 
run_time = cputime - run_time; 
disp('--------------------------------------------------------'); 
disp(' Run Time:'); 
disp(run_time); 
disp('--------------------------------------------------------'); 
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%----------------------------------------------------------------------
% File: Run_Problem.m 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description:  
% - This file is problem independent and should never have to be  
% - edited. It organizes the calls to three other functions: 
% - 1. The function to create the differentiation matrices and  
%      integration weights 
% - 2. The function to build any attacker or hvu trajectories and pdfs 
% - 3. The function the organizes the snopt call. 
% - The purpose of the file is mostly to create the global variables. 
% Inputs: Problem_Info, Discretization, Methods 
% Outputs: Results, build_time, run_time, INFO 
%----------------------------------------------------------------------  
% © 2012, CLAIRE WALTON. Some Rights Reserved. 
%====================================================================== 
function [Results, build_time, run_time, INFO] = 

Run_Problem(Problem_Info,Discretization, Methods) 
 
global CONSTANTS OFFLINE_TRAJECTORIES ... 
       PDF_VALUES MESHED_PDF_VALUES... 
       DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ... 
       DIFFERENTIATION_MATRICES ... 
       INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS 
 
build_time = cputime; 
 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'); 
disp(Problem_Info.Name); 
disp('--------------------------------------------------------'); 
disp('Discretization:'); 
disp(Discretization); 
 
Calculate_Methods(Discretization, Methods); 
%--------------------------------------------------------------------- 
% Creates DIFFERENTIATION_MATRICES, INTEGRATION_WEIGHTS, and 
% DISCRETIZATION VALUES.  
%  
% DIFFERENTIATION_MATRICES and INTEGRATION_WEIGHTS are *cell arrays*  
% with length given be length of discretization array. Each element of  
% the cell array is the matrix/array given by calculated the  
% differentiation matrix/integration array of the corresponding  
% discretization variable. 
% DISCRETIZATION_VALUES is also a cell array. 
%--------------------------------------------------------------------- 
 
feval(str2func(Problem_Info.Build_Simulation)); 
%--------------------------------------------------------------------- 
% Contributes to the global variable TRAJECTORIES. 
% TRAJECTORIES may include TRAJECTORIES.HVU and TRAJECTORIES.ATTACKERS, 
% depending on the needs of the objective function userfun. 
%--------------------------------------------------------------------- 
 
feval(str2func(Problem_Info.Build_PDF)); 
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%--------------------------------------------------------------------- 
% Creates the joint PDF, as per the options chosen in Problem file. 
% Put results in global cell array JOINT_PDF 
%--------------------------------------------------------------------- 
 
build_time = cputime - build_time; 
disp('--------------------------------------------------------'); 
disp(' Build Time:'); 
disp(build_time); 
disp('--------------------------------------------------------'); 
 
[x,F,xmul,Fmul,INFO, run_time] = Run_Optimization(Problem_Info); 
%--------------------------------------------------------------------- 
% Organizes the snopt call and calls it. Run_Optimization will access  
% the global variables created here. 
%--------------------------------------------------------------------- 
 
[Results] = ... 

feval(str2func(Problem_Info.Interpret_Results), x,F,xmul,Fmul); 
 
 
 
 
 
 
 
 
 
 
 
 
%----------------------------------------------------------------------
% File: Uniform_PDF 
% Compiler: MATLAB® v7.10.0.499 (R2010a)  
% 64-bit (win64)  
% Description: Forms uniform pdf 
% Inputs: discretization_values, w0, wf 
% Outputs: uniform PDF 
%----------------------------------------------------------------------  
% © 2012, CLAIRE WALTON. Some Rights Reserved. 
%====================================================================== 
function PDF = Uniform_PDF(discretization_values,w0,wf) 
 
PDF = ones(1,length(discretization_values))./abs(wf-w0); 
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